{"id":254782,"date":"2024-10-19T16:50:14","date_gmt":"2024-10-19T16:50:14","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-en-61400-25-62011\/"},"modified":"2024-10-25T12:16:11","modified_gmt":"2024-10-25T12:16:11","slug":"bs-en-61400-25-62011","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-en-61400-25-62011\/","title":{"rendered":"BS EN 61400-25-6:2011"},"content":{"rendered":"
This part of the IEC 61400-25 series specifies the information models related to condition monitoring for wind power plants and the information exchange of data values related to these models.<\/p>\n
Figure 2 illustrates the information flow of a system using condition monitoring to perform condition based maintenance. The figure illustrates how data values are refined and concentrated through the information flow, ending up with the ultimate goal of condition based maintenance \u2013 actions to be performed via issuing work orders to maintenance teams in order to prevent the wind power plant device to stop providing its intended service.<\/p>\n
Condition monitoring is mainly based on the following kinds of information.<\/p>\n
Time waveform records (samples) of a specific time interval to be exchanged in realtime or by files for analysis (e.g. acceleration, position detection, speed, stress detection).<\/p>\n<\/li>\n
Status information and measurements (synchronized with the waveform records) representing the turbine operation conditions.<\/p>\n<\/li>\n
Results of time waveform record analysis of vibration data (scalar values, array values, statistical values, historical (statistical) values, counters and status information).<\/p>\n<\/li>\n
Results of, for example, oil debris analysis.<\/p>\n<\/li>\n<\/ul>\n
It is the purpose of this standard to model condition monitoring information by using the information modelling approach as described in 6.2.2 of IEC 61400-25-1 and by extending the existing information model as specified in Clause 6 of IEC 61400-25-2, the information exchange models specified in Clause 9 of IEC 61400-25-3 and the mapping to communication profiles as specified in IEC 61400-25-4.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
6<\/td>\n | CONTENTS <\/td>\n<\/tr>\n | ||||||
8<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | Figures Figure 1 \u2013 Condition monitoring with separated TCD\/CMD functions <\/td>\n<\/tr>\n | ||||||
10<\/td>\n | 1 Scope Figure 2 \u2013 Schematic flow of condition monitoring information <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | 2 Normative references <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | 3 Terms and definitions <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 4 Abbreviated terms <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | Tables Table 1 \u2013 Abbreviated terms applied <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 5 General 5.1 Overview <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 5.2 Condition monitoring information modelling <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 5.3 Coordination system applied for identifying direction and angles 5.4 Active power bin concept Figure 3 \u2013 Reference coordinates system for the drive train Table 2 \u2013 Coordinate system and wind turbine related characteristics <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 6 Common data class attributes 6.1 General 6.2 Attributes for condition monitoring measurement description Figure 4 \u2013 Active power bin concept <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | Table 3 \u2013 Attributes used for measurement description Table 4 \u2013 Sensor identification convention <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | Table 5 \u2013 Sensor type code <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | Figure 5 \u2013 Sensor angular orientation Figure 6 \u2013 Sensor motion identification Table\u00a06 \u2013 Reference code for sensor sensitive axis orientation <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | Figure 7 \u2013 Sensor normal and reverse motion Figure 8 \u2013 Principle of shaft and bearing numbering along a drive train <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | Table 7 \u2013 Gearbox shaft and bearing identification <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | 7 Common data classes for wind turbine condition monitoring 7.1 General Table 8 \u2013 mxType values <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | 7.2 Common data classes defined in IEC\u00a061400-25-2 7.3 Condition monitoring bin (CMB) 7.4 Condition monitoring measurement description (CMMD) Table 9 \u2013 CDC: Condition monitoring bin (CMB) <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 7.5 Condition monitoring scalar value (CMSV) Table 10 \u2013 CDC: Condition monitoring measurement description (CMMD) <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 7.6 Scalar value array (SVA) Table 11 \u2013 CDC: Condition monitoring scalar value (CMSV) Table 12 \u2013 CDC: Scalar value array (SVA) <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 7.7 Condition monitoring scalar value array (CMSVA) 7.8 Condition monitoring vector value (CMVV) Table 13 \u2013 CDC: Condition monitoring scalar value array (CMSVA) <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 8 Logical nodes for wind turbine condition monitoring 8.1 General 8.2 Logical nodes inherited from IEC\u00a061400-25-2 Table 14 \u2013 CDC: Condition monitoring vector value (CMVV) <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 8.3 Wind turbine condition monitoring logical node WCON 9 Data file (DAF) Table 15 \u2013 LN: Wind turbine condition monitoring information (WCON) <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | Annex A (informative) Application of shaft and bearing position numbering Figure A.1 \u2013 Gearbox example \u2013 Spectral analysis from an Iss sensor <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | Annex B (informative) Examples of trends for mandatory measurements Figure B.1 \u2013 Wind turbine condition monitoring measurements <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Wind turbines – Communications for monitoring and control of wind power plants. Logical node classes and data classes for condition monitoring<\/b><\/p>\n |