Shopping Cart

No products in the cart.

BSI PD IEC/TR 62368-2:2015

$215.11

Audio/video, information and communication technology equipment – Explanatory information related to IEC 62368-1

Published By Publication Date Number of Pages
BSI 2015 154
Guaranteed Safe Checkout
Categories: ,

If you have any questions, feel free to reach out to our online customer service team by clicking on the bottom right corner. We’re here to assist you 24/7.
Email:[email protected]

Purpose: To identify the purpose and applicability of this standard and the exclusions from the scope.

Rationale: The scope excludes requirements for functional safety. Functional safety is addressed in IEC 61508-1. Because the scope includes computers that may control safety systems, functional safety requirements would necessarily include requirements for computer processes and software.

PDF Catalog

PDF Pages PDF Title
4 FOREWORD
6 Clause 0 Principles of this product safety standard
7 Clause 1 Scope
Clause 2 Normative references
Clause 3 Terms, definitions and abbreviations
9 Clause 4 General requirements
13 Tables
Table 1 – General summary of required safeguards
15 Clause 5 Electrically-caused injury
17 Figures
Figure 1 – Conventional time/current zones of effects of a.c. currents (15 Hz to 100 Hz) on persons for a current path corresponding to left hand to feet (see IEC TS 60479-1:2005, Figure 20)
18 Figure 2 – Conventional time/current zones of effects of d.c. currents on personsfor a longitudinal upward current path (see IEC TS 60479-1:2005, Figure 22)
Table 2 – Time/current zones for a.c. 15 Hz to 100 Hzfor hand to feet pathway (see IEC TS 60479-1:2005, Table 11)
19 Figure 3 – Illustration that limits depend on both voltage and current
Table 3 – Time/current zones for d.c. for hand to feet pathway(see IEC TS 60479-1:2005, Table 13)
21 Table 4 – Limit values of accessible capacitance (threshold of pain)
23 Table 5 – Total body resistances RT for a current path hand to hand, d.c.,for large surface areas of contact in dry condition
31 Figure 4 – Illustration of transient voltages on paired conductor external circuits
32 Figure 5 – Illustration of transient voltages on coaxial-cable external circuits
Table 6 – Insulation requirements for external circuits
33 Figure 6 – Basic and reinforced insulation in Table 15 of IEC 62368-1:2014 –Ratio reinforced to basic
35 Figure 7 – Reinforced clearances according to Rule 1, Rule 2, and Table 15
36 Table 7 – Voltage drop across clearance and solid insulation in series
42 Figure 8 – Example illustrating accessible internal wiring
44 Figure 9 – Waveform on insulation without surgesuppressors and no breakdown
Figure 10 – Waveforms on insulation during breakdownwithout surge suppressors
45 Figure 11 – Waveforms on insulation withsurge suppressors in operation
Figure 12 – Waveform on short-circuitedsurge suppressor and insulation
46 Figure 13 – Example for an ES2 source
47 Figure 14 – Example for an ES3 source
49 Figure 15 – Overview of protective conductors
53 Figure 17 – Touch current from a floating circuit
Figure 18 – Touch current from an earthed circuit
54 Figure 19 – Summation of touch currents in a PABX
55 Clause 6 Electrically-caused fire
59 Figure 20 – Possible safeguards against electrically-caused fire
61 Table 8 – Examples of application of various safeguards
62 Figure 21 – Fire clause flow chart
63 Table 9 – Basic safeguards against fire under normal operating conditionsand abnormal operating conditions
64 Table 10 – Supplementary safeguards against fire under single fault conditions
65 Table 11 – Method 1: Reduce the likelihood of ignition
66 Figure 22 – Prevent ignition flow chart
68 Figure 23 – Control fire spread summary
69 Figure 24 – Control fire spread PS2
70 Figure 25 – Control fire spread PS3
73 Table 12 – Method 2: Control fire spread
78 Figure 26 – Fire cone application to large component
80 Table 13 – Fire barrier and fire enclosure flammability requirements
83 Table 14 – Summary – Fire enclosure and fire barrier material requirements
85 Clause 7 Injury caused by hazardous substances
87 Table 15 – Control of chemical hazards
88 Figure 27 – Flowchart demonstrating the hierarchy of hazard management
89 Clause 8 Mechanically-caused injury
Figure 28 – Model for chemical injury
94 Figure 29 – Direction of forces to be applied
97 Clause 9 Thermal burn injury
Figure 30 – Model for a burn injury
99 Figure 31 – Model for safeguards against thermal burn injury
Figure 32 – Model for absence of a thermal hazard
Figure 33 – Model for presence of a thermal hazard with a physical safeguard in place
100 Figure 34 – Model for presence of a thermal hazard with behavioural safeguard in place
104 Clause 10 Radiation
Table 16 – Protection against radiation
106 Figure 35 – Graphical representation of LAeq,T
107 Figure 36 – Overview of operating modes
111 Figure 37 – Voltage-current characteristics (typical data)
116 Figure 38 – Current limit curves
119 Figure 39 – Example of a dummy battery circuit
122 Figure 40 – Example of a circuit with two power sources
126 Annex A(informative) Background information related to the use of SPDs
127 Figure A.1 – Installation has poor earthing and bonding –Equipment damaged (from ITUT K.66)
Figure A.2 – Installation has poor earthing and bonding – Using main earth bar for protection against lightning strike (from ITU-T K.66)
128 Figure A.3 – Installation with poor earthing and bonding, using a varistorand a GDT for protection against a lightning strike
Figure A.4 – Installation with poor earthing and bonding – Equipment damaged (TV set)
129 Figure A.5 – Safeguards
132 Figure A.6 – Discharge stages
133 Figure A.7 – holdover
134 Figure A.8 – Discharge
136 Figure A.9 – Characteristics
137 Figure A.10 – Follow on current pictures
138 Annex B (informative) Background information related to measurement of discharges – Determining the R-C discharge time constant for X- and Y-capacitors
Figure B.1 – Typical EMC filter schematic
140 Figure B.2 – 100 MΩ oscilloscope probes
Table B.1 – 100 MΩ oscilloscope probes
Table B.2 – Capacitor discharge
142 Figure B.3 – Combinations of EUT resistance and capacitancefor 1-s time constant
143 Figure B.4 – 240 V mains followed by capacitor discharge
144 Figure B.5 – Time constant measurement schematic
147 Table B.3 – Maximum Tmeasured values for combinationsof REUT and CEUT for TEUT of 1 s
148 Figure B.6 – Worst-case measured time constant values for 100 MΩ and 10 MΩ probes
149 Annex C (informative) Background information related to resistance to candle flame ignition
150 Bibliography
BSI PD IEC/TR 62368-2:2015
$215.11