{"id":426308,"date":"2024-10-20T07:01:21","date_gmt":"2024-10-20T07:01:21","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-en-iec-61980-32022-tc\/"},"modified":"2024-10-26T13:16:24","modified_gmt":"2024-10-26T13:16:24","slug":"bs-en-iec-61980-32022-tc","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-en-iec-61980-32022-tc\/","title":{"rendered":"BS EN IEC 61980-3:2022 – TC"},"content":{"rendered":"
This part of IEC 61980 applies to the off-board supply equipment for wireless power transfer via magnetic field (MF-WPT) to electric road vehicles for purposes of supplying electric energy to the RESS (rechargeable energy storage system) and\/or other on-board electrical systems. The MF-WPT system operates at standard supply voltage ratings per IEC 60038 up to 1 000 V AC and up to 1 500 V DC from the supply network. The power transfer takes place while the electric vehicle (EV) is stationary. Off-board supply equipment fulfilling the requirements in this document are intended to operate with EV devices fulfilling the requirements described in ISO 19363. The aspects covered in this document include – the characteristics and operating conditions, – the required level of electrical safety, – requirements for basic communication for safety and process matters if required by a MF111 WPT system, – requirements for positioning to assure efficient and safe MF-WPT power transfer, and – specific EMC requirements for MF-WPT systems. The following aspects are under consideration for future documents: – requirements for MF-WPT systems for two- and three-wheel vehicles, – requirements for MF-WPT systems supplying power to EVs in motion, and – requirements for bidirectional power transfer. – requirements for flush mounted primary devices – requirements for MF-WPT systems for heavy duty vehicles – requirements for MF-WPT systems with inputs greater than 11,1 kVA This standard does not apply to – safety aspects related to maintenance, and – trolley buses, rail vehicles and vehicles designed primarily for use off-road. NOTE The terms used in this document are specifically for MF-WPT.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
1<\/td>\n | 30470049 <\/td>\n<\/tr>\n | ||||||
221<\/td>\n | 30470049 <\/td>\n<\/tr>\n | ||||||
441<\/td>\n | A-30422073 <\/td>\n<\/tr>\n | ||||||
442<\/td>\n | undefined <\/td>\n<\/tr>\n | ||||||
447<\/td>\n | Annex ZA (normative)Normative references to international publicationswith their corresponding European publications <\/td>\n<\/tr>\n | ||||||
450<\/td>\n | Blank Page <\/td>\n<\/tr>\n | ||||||
451<\/td>\n | English CONTENTS <\/td>\n<\/tr>\n | ||||||
456<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
458<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
459<\/td>\n | 1 Scope 2 Normative references <\/td>\n<\/tr>\n | ||||||
460<\/td>\n | 3 Terms and definitions <\/td>\n<\/tr>\n | ||||||
464<\/td>\n | 4 Abbreviated terms 5 General 6 Classification <\/td>\n<\/tr>\n | ||||||
465<\/td>\n | Figures Figure 101 \u2013 Surface mounted Figure 102 \u2013 Flush mounted Tables Table 101 \u2013 MF-WPT power classes <\/td>\n<\/tr>\n | ||||||
466<\/td>\n | 7 General supply device requirements 7.1 General architecture Table 102 \u2013 Supported secondary device ground clearance range <\/td>\n<\/tr>\n | ||||||
467<\/td>\n | 7.2 Power transfer requirements Figure 1 \u2013 Example of an MF-WPT system <\/td>\n<\/tr>\n | ||||||
469<\/td>\n | Table 103 \u2013 Compatibility class A supply device output power ramp rates <\/td>\n<\/tr>\n | ||||||
470<\/td>\n | 7.3 Efficiency Table 104 \u2013 Minimum power transfer efficiency with compatibility class A supplydevice and normative reference EV device of same power class Table 105 \u2013 Minimum power transfer efficiency with compatibility class A supplydevice and normative reference EV device of different power classes <\/td>\n<\/tr>\n | ||||||
471<\/td>\n | 7.4 Alignment 7.5 Activities provided by WPT system Table 106 \u2013 Minimum power transfer efficiency for a compatibilityclass B supply device and specified EVPC Table 107 \u2013 Alignment tolerance of a primary device (compatibility class A) <\/td>\n<\/tr>\n | ||||||
472<\/td>\n | Table 108 \u2013 Summary requirements according to compatibility class <\/td>\n<\/tr>\n | ||||||
473<\/td>\n | 8 Communication 9 Power transfer interoperability <\/td>\n<\/tr>\n | ||||||
474<\/td>\n | 10 Protection against electric shock 10.1 General requirements 10.2 Degree of protection against access to hazardous-live-parts 11 Specific requirements for WPT systems <\/td>\n<\/tr>\n | ||||||
476<\/td>\n | Figure 103 \u2013 Test bench protection areas <\/td>\n<\/tr>\n | ||||||
478<\/td>\n | 12 Power cable requirements <\/td>\n<\/tr>\n | ||||||
479<\/td>\n | 13 Constructional requirements 13.1 Supply device dimensions and installation requirements 13.4 IP degrees 14 Strength of materials and parts <\/td>\n<\/tr>\n | ||||||
480<\/td>\n | 15 Service and test conditions <\/td>\n<\/tr>\n | ||||||
481<\/td>\n | 16 Electromagnetic compatibility (EMC) 16.1 Load and operating conditions <\/td>\n<\/tr>\n | ||||||
482<\/td>\n | Figure 104 \u2013 Example of test bench setup (version 1) \u2013 View from above <\/td>\n<\/tr>\n | ||||||
483<\/td>\n | Figure 105 \u2013 Example of test bench setup (version 2) \u2013 View from above <\/td>\n<\/tr>\n | ||||||
484<\/td>\n | Figure 106 \u2013 Side view of test setup shown in Figure 104 <\/td>\n<\/tr>\n | ||||||
485<\/td>\n | Figure 107 \u2013 Example of vehicle test setup (version 1) \u2013 View from above <\/td>\n<\/tr>\n | ||||||
486<\/td>\n | Figure 108 \u2013 Example of vehicle test setup (version 2) \u2013 View from above <\/td>\n<\/tr>\n | ||||||
487<\/td>\n | 17 Marking and instructions Figure 109 \u2013 Side view of test setup shown in Figure 107 <\/td>\n<\/tr>\n | ||||||
490<\/td>\n | Figure 110 \u2013 Illustration of test positions <\/td>\n<\/tr>\n | ||||||
491<\/td>\n | Table 109 \u2013 Alignment positions and offset values for primary deviceswhich are part of compatibility class A supply devices <\/td>\n<\/tr>\n | ||||||
493<\/td>\n | Table 110 \u2013 Compatibility class A test 2 test positions <\/td>\n<\/tr>\n | ||||||
496<\/td>\n | Table 111 \u2013 Example of compatibility class B supply device test 2 test positions <\/td>\n<\/tr>\n | ||||||
497<\/td>\n | Table 112 \u2013 Test bodies for touch hazard Table 113 \u2013 Test objects for ignition risk test <\/td>\n<\/tr>\n | ||||||
502<\/td>\n | Table 114 \u2013 Vehicle detection action <\/td>\n<\/tr>\n | ||||||
503<\/td>\n | Annex A (normative)Circular reference EVPC A.1 Circular reference EVPCs for MF-WPT1 <\/td>\n<\/tr>\n | ||||||
504<\/td>\n | Figure A.1 \u2013 Mechanical dimensions of the MF-WPT1\/Z1 reference secondary device <\/td>\n<\/tr>\n | ||||||
505<\/td>\n | Figure A.2 \u2013 Schematic of the EV power electronics for the MF-WPT1\/Z1 reference EVPC Figure A.3 \u2013 Impedance compensation circuit Table A.1 \u2013 Values of circuit elements for Figure A.2 <\/td>\n<\/tr>\n | ||||||
506<\/td>\n | Figure A.4 \u2013 Example of a rectifier circuit Table A.2 \u2013 Range of coupling factors <\/td>\n<\/tr>\n | ||||||
507<\/td>\n | Figure A.5 \u2013 Mechanical dimensions of the MF-WPT1\/Z2 reference secondary device <\/td>\n<\/tr>\n | ||||||
508<\/td>\n | Figure A.6 \u2013 Schematic of the EV power electronics for the MF-WPT1 reference EVPC Figure A.7 \u2013 Impedance compensation circuit Table A.3 \u2013 Values of circuit elements for Figure A.6 <\/td>\n<\/tr>\n | ||||||
509<\/td>\n | Figure A.8 \u2013 Example of a rectifier circuit Table A.4 \u2013 Range of coupling factors <\/td>\n<\/tr>\n | ||||||
510<\/td>\n | Figure A.9 \u2013 Mechanical dimensions of the MF-WPT1\/Z3 reference secondary device <\/td>\n<\/tr>\n | ||||||
511<\/td>\n | Figure A.10 \u2013 Schematic of the EV power electronicsfor the MF-WPT1\/Z3 reference EVPC Figure A.11 \u2013 Impedance compensation circuit Table A.5 \u2013 Values of circuit elements for Figure A.10 <\/td>\n<\/tr>\n | ||||||
512<\/td>\n | A.2 Circular reference EVPCs for MF-WPT1\/MF-WPT2 Figure A.12 \u2013 Example of a rectifier circuit Table A.6 \u2013 Range of coupling factors <\/td>\n<\/tr>\n | ||||||
513<\/td>\n | Figure A.13 \u2013 Mechanical dimensions of the MF-WPT1and MF-WPT2 Z1 reference secondary device <\/td>\n<\/tr>\n | ||||||
514<\/td>\n | Figure A.14 \u2013 Schematic of the EV power electronics for the MF-WPT1and MF-WPT2 Z1 reference EVPC Figure A.15 \u2013 Example of an impedance compensation circuit using variable reactances Table A.7 \u2013 Values of circuit elements for Figure A.14 <\/td>\n<\/tr>\n | ||||||
515<\/td>\n | Figure A.16 \u2013 Example of a rectifier circuit Table A.8 \u2013 Values of variable reactances Table A.9 \u2013 Coupling factors and coil current MF-WPT1 and MF-WPT2 Z1 <\/td>\n<\/tr>\n | ||||||
516<\/td>\n | Figure A.17 \u2013 Mechanical dimensions of the MF-WPT1and MF-WPT2 Z2 reference secondary device <\/td>\n<\/tr>\n | ||||||
517<\/td>\n | Figure A.18 \u2013 Schematic of the EV power electronics for the MF-WPT1and MF-WPT2 Z2 reference EVPC Figure A.19 \u2013 Example of impedance compensation circuit using variable reactances Table A.10 \u2013 Values of circuit elements for Figure A.18 <\/td>\n<\/tr>\n | ||||||
518<\/td>\n | Figure A.20 \u2013 Example of a rectifier circuit Table A.11 \u2013 Values of variable reactances Table A.12 \u2013 Coupling factors and coil current MF-WPT1 and MF-WPT2 Z2 <\/td>\n<\/tr>\n | ||||||
519<\/td>\n | Figure A.21 \u2013 Mechanical dimensions of the MF-WPT1and MF-WPT2 Z3 reference secondary device <\/td>\n<\/tr>\n | ||||||
520<\/td>\n | Figure A.22 \u2013 Schematic of the EV power electronics for the MF-WPT1and MF-WPT2 reference EVPC Figure A.23 \u2013 Example of impedance compensation circuit using variable reactances Table A.13 \u2013 Values of circuit elements for Figure A.22 <\/td>\n<\/tr>\n | ||||||
521<\/td>\n | A.3 Circular reference EVPCs for MF-WPT3 Figure A.24 \u2013 Example of a rectifier circuit Table A.14 \u2013 Values of variable reactances Table A.15 \u2013 Coupling factors and coil current MF-WPT1 and MF-WPT2 Z3 <\/td>\n<\/tr>\n | ||||||
522<\/td>\n | Figure A.25 \u2013 Mechanical dimensions of the MF-WPT3\/Z1 reference secondary device <\/td>\n<\/tr>\n | ||||||
523<\/td>\n | Figure A.26 \u2013 Schematic of the EV power electronics for the MF-WPT3 reference EVPC Figure A.27 \u2013 Example for impedance compensation circuit using variable reactances Table A.16 \u2013 Values of circuit elements for Figure A.26 <\/td>\n<\/tr>\n | ||||||
524<\/td>\n | Figure A.28 \u2013 Example for an output filter and rectifier Table A.17 \u2013 Values of variable reactances Table A.18 \u2013 Inductance values for Figure A.28 Table A.19 \u2013 Coupling factors and coil current MF-WPT3\/Z1 <\/td>\n<\/tr>\n | ||||||
525<\/td>\n | Figure A.29 \u2013 Mechanical dimensions of the MF-WPT3\/Z2 reference secondary device <\/td>\n<\/tr>\n | ||||||
526<\/td>\n | Figure A.30 \u2013 Schematic of the EV power electronicsfor the MF-WPT3\/Z2 reference EVPC Figure A.31 \u2013 Example for impedance compensation circuit using variable reactances Table A.20 \u2013 Values of circuit elements for Figure A.30 <\/td>\n<\/tr>\n | ||||||
527<\/td>\n | Figure A.32 \u2013 Example of an output filter and rectifier Table A.21 \u2013 Values of variable reactances Table A.22 \u2013 Inductance values for Figure A.32 Table A.23 \u2013 Coupling factors and coil current MF-WPT3\/Z2 <\/td>\n<\/tr>\n | ||||||
528<\/td>\n | Figure A.33 \u2013 Mechanical dimensions of the MF-WPT3\/Z3 reference secondary device <\/td>\n<\/tr>\n | ||||||
529<\/td>\n | Figure A.34 \u2013 Schematic of the EV power electronics for the MF-WPT3 reference EVPC Figure A.35 \u2013 Example of an impedance compensation circuit using variable reactances Table A.24 \u2013 Values of circuit elements for Figure A.17 Table A.25 \u2013 Values of variable reactances <\/td>\n<\/tr>\n | ||||||
530<\/td>\n | Figure A.36 \u2013 Example of an output filter and rectifier Table A.26 \u2013 Inductance values for Figure A.36 Table A.27 \u2013 Coupling factors and coil current MF-WPT3\/Z3 <\/td>\n<\/tr>\n | ||||||
531<\/td>\n | Annex B (informative)Examples of other secondary devices B.1 DD secondary device for MF-WPT1\/Z1 Figure B.1 \u2013 Mechanical dimensions of the MF-WPT1\/Z1 DD secondary device Table B.1 \u2013 Mechanical dimensions of the MF-WPT1\/Z1 DD secondary device <\/td>\n<\/tr>\n | ||||||
532<\/td>\n | B.2 DD secondary device for MF-WPT1\/Z2 B.3 DD secondary device for MF-WPT2\/Z1 Figure B.2 \u2013 Mechanical dimensions of the MF-WPT1\/Z2 DD secondary device Table B.2 \u2013 Mechanical dimensions of the MF-WPT1\/Z2 DD secondary device <\/td>\n<\/tr>\n | ||||||
533<\/td>\n | B.4 DD secondary device for MF-WPT2\/Z2 Figure B.3 \u2013 Mechanical dimensions of the MF-WPT2\/Z1 DD secondary device Table B.3 \u2013 Mechanical dimensions of the MF-WPT2\/Z1 DD reference secondary device <\/td>\n<\/tr>\n | ||||||
534<\/td>\n | B.5 DD secondary device for MF-WPT2\/Z3 Figure B.4 \u2013 Mechanical dimensions of the MF-WPT2\/Z2 DD secondary device Table B.4 \u2013 Mechanical dimensions of the MF-WPT2\/Z2 DD reference secondary device <\/td>\n<\/tr>\n | ||||||
535<\/td>\n | B.6 DD secondary device for MF-WPT3\/Z1 Figure B.5 \u2013 Mechanical dimensions of the MF-WPT2\/Z3 DD secondary device Table B.5 \u2013 Mechanical dimensions of the MF-WPT2\/Z3 DD secondary device <\/td>\n<\/tr>\n | ||||||
536<\/td>\n | B.7 DD secondary device for MF-WPT3\/Z2 Figure B.6 \u2013 Mechanical dimensions of the MF-WPT3\/Z1 DD secondary device Table B.6 \u2013 Mechanical dimensions of the MF-WPT3\/Z1 DD secondary device <\/td>\n<\/tr>\n | ||||||
537<\/td>\n | B.8 DD secondary device for MF-WPT3\/Z3 Figure B.7 \u2013 Mechanical dimensions of the MF-WPT3\/Z2 DD secondary device Table B.7 \u2013 Mechanical dimensions of the MF-WPT3\/Z2 DD secondary device <\/td>\n<\/tr>\n | ||||||
538<\/td>\n | Figure B.8 \u2013 Mechanical dimensions of the MF-WPT3\/Z3 DD secondary device Table B.8 \u2013 Mechanical dimensions of the MF-WPT3\/Z3 DD secondary device <\/td>\n<\/tr>\n | ||||||
539<\/td>\n | Annex C (informative)Coil position in parking spot C.1 General C.2 Width of vehicles and parking spots C.3 Placement along the direction of travel <\/td>\n<\/tr>\n | ||||||
541<\/td>\n | Annex D (informative)Theoretical approach for system interoperability D.1 General D.2 Magnetic and electric interoperability <\/td>\n<\/tr>\n | ||||||
542<\/td>\n | Figure D.1 \u2013 General schematic of the concept showing the coils with their portsto the power electronics and the varying parameters <\/td>\n<\/tr>\n | ||||||
543<\/td>\n | Table D.1 \u2013 Description of terms <\/td>\n<\/tr>\n | ||||||
546<\/td>\n | Table D.2 \u2013 Fundamental mutual inductance values M0 for Z1 (in \u00b5H) <\/td>\n<\/tr>\n | ||||||
547<\/td>\n | Table D.3 \u2013 Fundamental mutual inductance values M0 for Z2 (in \u00b5H) <\/td>\n<\/tr>\n | ||||||
548<\/td>\n | Table D.4 \u2013 Fundamental mutual inductance values M0 for Z3 (in \u00b5H) <\/td>\n<\/tr>\n | ||||||
549<\/td>\n | Figure D.2 \u2013 Schematic to explain impedance Table D.5 \u2013 Explanation of terms <\/td>\n<\/tr>\n | ||||||
551<\/td>\n | Figure D.3 \u2013 General behaviour of the reflected impedance (example) <\/td>\n<\/tr>\n | ||||||
554<\/td>\n | Table D.6 \u2013 Voltages (RMS) required to be induced in circular reference secondary coils <\/td>\n<\/tr>\n | ||||||
556<\/td>\n | Figure D.4 \u2013 Impedance space at the primary coil (example) <\/td>\n<\/tr>\n | ||||||
557<\/td>\n | Figure D.5 \u2013 Impedance spaces of the reference primary coil and alternate electronics Table D.7 \u2013 Recommended parameters for primary coil impedance space <\/td>\n<\/tr>\n | ||||||
558<\/td>\n | D.3 Compliance test and measurement specifications <\/td>\n<\/tr>\n | ||||||
559<\/td>\n | Figure D.6 \u2013 Test set-up for reference or product primary coilelectric interoperability conformance tests <\/td>\n<\/tr>\n | ||||||
562<\/td>\n | Figure D.7 \u2013 Coaxial coil gauge device “CC325” <\/td>\n<\/tr>\n | ||||||
564<\/td>\n | Figure D.8 \u2013 Transversal coil gauge device “DD275” <\/td>\n<\/tr>\n | ||||||
565<\/td>\n | Annex E (informative)Determining centre alignment point E.1 General E.2 Laboratory procedure for determining the approximate centre alignment point of a primary device of an SPC with a secondary device of a reference EVPC E.3 Laboratory procedure for determining the approximate centre alignment point of an EVPC with a primary device of a reference SPC E.4 Determining the centre alignment point for a coil pair through simulation <\/td>\n<\/tr>\n | ||||||
566<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Tracked Changes. Electric vehicle wireless power transfer (WPT) systems – Specific requirements for magnetic field wireless power transfer systems<\/b><\/p>\n |