{"id":384537,"date":"2024-10-20T03:26:39","date_gmt":"2024-10-20T03:26:39","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/aisc-d825-21w-2021\/"},"modified":"2024-10-26T06:16:12","modified_gmt":"2024-10-26T06:16:12","slug":"aisc-d825-21w-2021","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/aisc\/aisc-d825-21w-2021\/","title":{"rendered":"AISC D825 21W 2021"},"content":{"rendered":"
The newly updated AISC Design Guide 25: Frame Design Using Nonprismatic Members, developed in conjunction with the Metal Building Manufacturers Association (MBMA), presents a comprehensive approach to the design of frames using nonprismatic members within the context of the 2016 AISC Specification for Structural Steel Buildings. Extensive design examples are included in this 400+ page volume.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
1<\/td>\n | Frame Design Using Nonprismatic Members \n <\/td>\n<\/tr>\n | ||||||
4<\/td>\n | Copyright \n <\/td>\n<\/tr>\n | ||||||
5<\/td>\n | Authors\/Acknowledgments\/Dedication \n <\/td>\n<\/tr>\n | ||||||
6<\/td>\n | Preface \n <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | Table of Contents \n <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | Chapter 1 Introduction \n 1.1 Basis for Recommendations \n <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 1.2 Scope \n <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 1.3 Benefits of Web-Tapered Members \n 1.4 \nFabrication of Web-Tapered Members 1.5 General Notes on This Design Guide \n <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | Chapter 2 Literature Review and Summary of Recommended Methods \n 2.1 Previous Research \n <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 2.2 Relationship to and Expansion upon Prior AISC Provisions for Web-Tapered Members \n <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | Chapter 3 Design Basis \n 3.1 Key Terminology \n <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 3.2 Limit States Design \n <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | Chapter 4 Stability Design Requirements \n 4.1 Key Terminology \n <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 4.2 ASCE\/SEI 7 and IBC Seismic Stability Design Requirements \n <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | 4.3 AISC Stability Design Requirements \n <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | 4.4 AISC Stability Design Methods \n <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | 4.5 Common Parameters \n <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | 4.6 Detailed Requirements of the AISC Stability Design Methods \n <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | Chapter 5 Member Design \n 5.1 Key Terminology \n 5.2 Axial Tension \n <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | Example 5.1 – Axial Tension Resistance, Tapered Members with Bolt Holes \n <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | 5.3 Axial Compression \n <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | Example 5.2a – Axial Compressive Resistance, Doubly Symmetric, Linearly Tapered Member with Simple Bracing \n <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | 5.4 Flexure \n <\/td>\n<\/tr>\n | ||||||
96<\/td>\n | Example 5.2b – Flexural Resistance, Doubly Symmetric, Linearly Tapered Member with Simple Bracing \n <\/td>\n<\/tr>\n | ||||||
115<\/td>\n | 5.5 Combined Flexure and Axial Force \n <\/td>\n<\/tr>\n | ||||||
120<\/td>\n | Example 5.2c – Combined Axial Compression and Flexure, Doubly Symmetric, Linearly Tapered Member with Simple Bracing \n <\/td>\n<\/tr>\n | ||||||
123<\/td>\n | 5.6 Shear \n <\/td>\n<\/tr>\n | ||||||
130<\/td>\n | Example 5.3 – Shear Strength of a Linearly Tapered Member \n <\/td>\n<\/tr>\n | ||||||
142<\/td>\n | 5.7 Consideration of Concentrated Forces on Flanges and Webs \n 5.8 Additional Member Examples \n <\/td>\n<\/tr>\n | ||||||
143<\/td>\n | Example 5.4a – Axial Compressive Resistance, Singly Symmetric, Linearly Tapered Member with Unequal Flanges and Intermediate Bracing Only on One Flange \n <\/td>\n<\/tr>\n | ||||||
158<\/td>\n | Example 5.4b – Flexural Resistance, Singly Symmetric, Linearly Tapered Member with Intermediate Bracing on the Tension Flange \n <\/td>\n<\/tr>\n | ||||||
173<\/td>\n | Example 5.4c – Combined Axial Compression and Flexure, Singly Symmetric, Linearly Tapered Member with Intermediate Bracing on Tension Flange \n <\/td>\n<\/tr>\n | ||||||
177<\/td>\n | Chapter 6 Frame Design \n 6.1 Planar First-Order Analysis of Frames \n <\/td>\n<\/tr>\n | ||||||
179<\/td>\n | 6.2 Planar Second-Order Analysis of Frames \n <\/td>\n<\/tr>\n | ||||||
191<\/td>\n | 6.3 In-Plane Analysis and Design Considerations for Single-Story Clear-Span Frames \n <\/td>\n<\/tr>\n | ||||||
194<\/td>\n | 6.4 Serviceability Considerations \n 6.5 Overview of System Design Examples \n <\/td>\n<\/tr>\n | ||||||
197<\/td>\n | Chapter 7 System Design Example 1 Clear-Span Monoslope Building Frame \n 7.1 Material and Geometry \n <\/td>\n<\/tr>\n | ||||||
199<\/td>\n | 7.2 Focus of This Example \n <\/td>\n<\/tr>\n | ||||||
200<\/td>\n | 7.3 Loading \n <\/td>\n<\/tr>\n | ||||||
201<\/td>\n | 7.4 Planar Frame Analysis Discretization \n <\/td>\n<\/tr>\n | ||||||
203<\/td>\n | 7.5 Calculation of Required Strengths from Planar Load-Deflection Frame Analysis \n <\/td>\n<\/tr>\n | ||||||
205<\/td>\n | 7.6 Calculation of the System (gamma)ex by In-Plane Elastic Buckling Analysis \n <\/td>\n<\/tr>\n | ||||||
207<\/td>\n | 7.7 Estimation of System (gamma)ex Given First- and Second-Order Analysis Displacements \n <\/td>\n<\/tr>\n | ||||||
208<\/td>\n | 7.8 Calculation of In-Plane (gamma)ex for Use with the Direct Analysis Method \n <\/td>\n<\/tr>\n | ||||||
210<\/td>\n | 7.9 Out-of-Plane Elastic CATB and LTB Analysis Calculations \n <\/td>\n<\/tr>\n | ||||||
214<\/td>\n | 7.10 Manual Estimation of (gamma)eCAT and (gamma)eLTB for Selected Doubly Tapered Roof Girder Design Segment \n <\/td>\n<\/tr>\n | ||||||
220<\/td>\n | 7.11 Summary of Elastic Buckling Load Ratios \n <\/td>\n<\/tr>\n | ||||||
221<\/td>\n | 7.12 Axial Compressive Strength Ratio \n <\/td>\n<\/tr>\n | ||||||
224<\/td>\n | 7.13 Flexural Strength Ratios \n <\/td>\n<\/tr>\n | ||||||
228<\/td>\n | 7.14 Unity Checks for Combined Flexure and Axial Force \n 7.15 Assessment Via Inelastic Buckling Analysis \n <\/td>\n<\/tr>\n | ||||||
231<\/td>\n | Chapter 8 System Design Example 2 Clear-Span Crane Building Frame \n 8.1 Material and Geometry \n 8.2 Focus of This Example \n <\/td>\n<\/tr>\n | ||||||
233<\/td>\n | 8.3 Loading \n <\/td>\n<\/tr>\n | ||||||
234<\/td>\n | 8.4 Planar Frame Analysis Discretization \n <\/td>\n<\/tr>\n | ||||||
236<\/td>\n | 8.5 Calculation of Required Strengths from Planar Load-Deflection Frame Analysis \n <\/td>\n<\/tr>\n | ||||||
237<\/td>\n | 8.6 Calculation of System (gamma)ex by In-Plane Elastic Bucklying Analysis \n <\/td>\n<\/tr>\n | ||||||
238<\/td>\n | 8.7 Estimation of System (gamma)ex Given First- and Second-Order Analysis Displacements \n <\/td>\n<\/tr>\n | ||||||
242<\/td>\n | 8.8 Calculation of In-Plane (gamma)eL for Use with Direct Analysis Method \n <\/td>\n<\/tr>\n | ||||||
243<\/td>\n | 8.9 Out-of-Plane Elastic CATB and LTB Analysis Calculations \n <\/td>\n<\/tr>\n | ||||||
247<\/td>\n | 8.10 Manual Estimation of (gamma)eCAT and (gamma)eLTB for Bottom Righthand Column Design Segment \n <\/td>\n<\/tr>\n | ||||||
254<\/td>\n | 8.11 Summary of Elastic Buckling Load Ratios \n <\/td>\n<\/tr>\n | ||||||
255<\/td>\n | 8.12 Axial Compressive Strength Ratios \n <\/td>\n<\/tr>\n | ||||||
259<\/td>\n | 8.13 Flexural Strength Ratios \n <\/td>\n<\/tr>\n | ||||||
264<\/td>\n | 8.14 Unity Checks for Combined Flexural and Axial Force \n 8.15 Assessment Via Inelastic Buckling Analysis \n <\/td>\n<\/tr>\n | ||||||
267<\/td>\n | Chapter 9 System Design Example 3 Modulary Crane Building Frame \n 9.1 Material and Geometry \n 9.2 \nFocus of This Example <\/td>\n<\/tr>\n | ||||||
269<\/td>\n | 9.3 Loading \n <\/td>\n<\/tr>\n | ||||||
271<\/td>\n | 9.4 Planar Frame Analysis Discretization \n <\/td>\n<\/tr>\n | ||||||
272<\/td>\n | 9.5 Calculation of Required Strengths from Planar Load-Deflection Frame Analysis \n <\/td>\n<\/tr>\n | ||||||
274<\/td>\n | 9.6 Calculation of System (gamma)ex by In-Plane Elastic Buckling Analysis \n <\/td>\n<\/tr>\n | ||||||
275<\/td>\n | 9.7 Estimation of System (gamma)ex Given First- and Second-Order Analysis Displacements \n <\/td>\n<\/tr>\n | ||||||
277<\/td>\n | 9.8 Calcuation of In-Plane (gamma)eL for Use with Direct Analysis Method \n <\/td>\n<\/tr>\n | ||||||
278<\/td>\n | 9.9 Out-of-Plane Elastic Buckling Analysis Calculations \n 9.10 Manual Estimation of (gamma)eCAT for Righthand Column \n <\/td>\n<\/tr>\n | ||||||
281<\/td>\n | 9.11 Summary of Elastic Buckling Load Ratios \n 9.12 Axial Compressive Strength Ratios \n <\/td>\n<\/tr>\n | ||||||
288<\/td>\n | 9.13 Flexural Strength Ratios \n <\/td>\n<\/tr>\n | ||||||
294<\/td>\n | 9.14 Unity Checks for Combined Flexure and Axial Force \n <\/td>\n<\/tr>\n | ||||||
295<\/td>\n | 9.15 Assessment Using Inelastic Buckling Analysis \n <\/td>\n<\/tr>\n | ||||||
297<\/td>\n | Chapter 10 System Design Example 4 Clear-Span Building Frame with Large \n Span-to-Eave Height 10.1 Material and Geometry \n <\/td>\n<\/tr>\n | ||||||
299<\/td>\n | 10.2 Focus of This Example \n 10.3 Loading \n <\/td>\n<\/tr>\n | ||||||
300<\/td>\n | 10.4 Planar Frame Analysis Discretization \n <\/td>\n<\/tr>\n | ||||||
302<\/td>\n | 10.5 Calculation of Required Strengths from Planar Load-Deflection Frame Analysis \n <\/td>\n<\/tr>\n | ||||||
304<\/td>\n | 10.6 Calculation of System (Gamma \n)ex by In-plane Elastic Buckling Analysis <\/td>\n<\/tr>\n | ||||||
305<\/td>\n | 10.7 Estimation of System (Gamma)ex Given First- and Second-Order Analysis Displacements <\/td>\n<\/tr>\n | ||||||
307<\/td>\n | 10.8 Calculation of In-Plane (Gamma)eL for Use with Direct Analysis Method <\/td>\n<\/tr>\n | ||||||
308<\/td>\n | 10.9 Out-of-Plane Elastic CATB and LTB Analysis Calculations \n <\/td>\n<\/tr>\n | ||||||
312<\/td>\n | 10.10 Manual Estimation of (Gamma)eCAT and (Gamma)eLTB for Subject Roof Girder Design Segments \n <\/td>\n<\/tr>\n | ||||||
322<\/td>\n | 10.11 Summary of Elastic Buckling Load Ratios \n <\/td>\n<\/tr>\n | ||||||
323<\/td>\n | 10.12 Axial Compressive Strength Ratios \n <\/td>\n<\/tr>\n | ||||||
332<\/td>\n | 10.13 Flexural Strength Ratios \n <\/td>\n<\/tr>\n | ||||||
337<\/td>\n | 10.14 Unity Checks for Combined Flexure and Axial Force \n <\/td>\n<\/tr>\n | ||||||
341<\/td>\n | Chapter 11 Annotated Bibliography \n 11.1 Column Elastic Flexural Buckling \n <\/td>\n<\/tr>\n | ||||||
343<\/td>\n | 11.2 Elastic Flexural Buckling of Rectangular Frames \n <\/td>\n<\/tr>\n | ||||||
345<\/td>\n | 11.3 Elastic Flexural Buckling of Gabled Frames \n <\/td>\n<\/tr>\n | ||||||
346<\/td>\n | 11.4 Elastic Flexural Buckling of Crane Buildings \n <\/td>\n<\/tr>\n | ||||||
347<\/td>\n | 11.5 Column Inelastic Flexural Buckling and Design Strength \n <\/td>\n<\/tr>\n | ||||||
348<\/td>\n | 11.6 First- and Second-Order Elastic Beam-Column and\/or Frame Analysis (Planar Analysis) \n 11.7 Column Contrained-Axis Torional Buckling \n <\/td>\n<\/tr>\n | ||||||
349<\/td>\n | 11.8 Beam and Beam-Column Elastic Lateral-Torsional Buckling \n <\/td>\n<\/tr>\n | ||||||
353<\/td>\n | 11.9 Beam and Beam-Column Design Resistances \n <\/td>\n<\/tr>\n | ||||||
358<\/td>\n | 11.10 General Behavior and Design of Frames Composed of Tapered I-Section Members \n <\/td>\n<\/tr>\n | ||||||
363<\/td>\n | Appendix A Calculation of (gamma)eL or PeL for Nonprismatic Members \n <\/td>\n<\/tr>\n | ||||||
367<\/td>\n | Appendix B Calculation of In-Plane (gamma)e Factors for the ELM \n <\/td>\n<\/tr>\n | ||||||
371<\/td>\n | Appendix C Guidelines for Out-of-Plane Buckling Analysis \n <\/td>\n<\/tr>\n | ||||||
381<\/td>\n | Appendix D Benchmark Problems \n <\/td>\n<\/tr>\n | ||||||
399<\/td>\n | Symbols \n <\/td>\n<\/tr>\n | ||||||
403<\/td>\n | Glossary \n <\/td>\n<\/tr>\n | ||||||
407<\/td>\n | Abbreviations \n <\/td>\n<\/tr>\n | ||||||
409<\/td>\n | References <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Design Guide 25: Frame Design Using Nonprismatic Members, Second Edition<\/b><\/p>\n |