Shopping Cart

No products in the cart.

IEEE 18 2013

$35.21

IEEE Standard for Shunt Power Capacitors

Published By Publication Date Number of Pages
IEEE 2013 39
Guaranteed Safe Checkout
Category:

If you have any questions, feel free to reach out to our online customer service team by clicking on the bottom right corner. We’re here to assist you 24/7.
Email:[email protected]

Revision Standard – Active. Power capacitors rated 216 V or higher, 2.5 kvar or more, and designed for shunt connection to alternating-current transmission and distribution systems operating at a nominal frequency of 50 Hz or 60 Hz, are considered.

PDF Catalog

PDF Pages PDF Title
1 IEEE Std 18-2012 front cover
3 Title page
6 Notice to users
Laws and regulations
Copyrights
Updating of IEEE documents
Errata
Patents
8 Participants
10 Introduction
11 Contents
13 IMPORTANT NOTICE
1. Scope
2. Normative references
14 3. Definitions
15 4. Service conditions
4.1 Normal service conditions
16 4.2 Abnormal service conditions
5. Ratings and capabilities
5.1 Standard ratings
17 5.2 Capacitance tolerance
5.3 Maximum operating voltage, current and kvar
5.4 Typical voltage and reactive power ratings for capacitors
18 5.5 Insulation classes
5.6 Frequency
5.7 Ambient temperature
5.7.1 Maximum ambient
19 5.7.2 Minimum ambient
5.8 Overvoltage and overcurrent withstand capabilities
6. Manufacturing
6.1 Thermal stability
6.2 Basic impulse insulation level
20 6.3 Internal discharge devices
6.4 Radio influence voltage (RIV)
6.5 Bushings
6.5.1 Number of bushings
6.5.2 Electrical characteristics
6.6 Connection provisions
6.6.1 Terminal size
21 6.6.2 Single bushing capacitors
6.6.3 Indoor capacitors
6.6.4 Metal-enclosed capacitor equipment
22 6.7 Internal fuses for internally fused capacitors
6.7.1 General
6.7.2 Disconnecting requirements
6.7.3 Withstand requirementsThe withstand requirements are as follows:
23 6.8 Information to be provided with capacitor and capacitor equipment
6.8.1 Nameplate marking for capacitor unit
6.8.2 Information to be supplied with internally fused capacitors or capacitor units for fuseless capacitor equipment
24 6.8.2.1 Internally fused capacitors
6.8.2.2 Capacitor units for fuseless capacitor equipment
6.8.3 Non-PCB impregnant identification
6.8.4 Nameplate for capacitor equipment
6.9 Dimensions
6.9.1 Mounting hole spacing
6.9.2 Non-enclosed substation equipment
27 6.10 Electrical bonding provisions
6.11 Color
7. Testing
7.1 Design tests
7.1.1 Impulse withstand test
28 7.1.1.1 Impulse polarity
7.1.1.2 Impulse waveshape
7.1.1.3 Impulse measurement
29 7.1.2 AC voltage test
7.1.3 Thermal stability test
7.1.3.1 Selection of samples
7.1.3.2 Test method
7.1.3.2.1 Mounting conditions
7.1.3.2.2 Ambient temperature
7.1.3.2.3 Test voltage
30 7.1.3.2.4 Temperature measurement
7.1.4 Radio influence voltage (RIV) test
7.1.4.1 Equipment
7.1.4.2 Test voltage
7.1.4.3 Method
7.1.4.4 Precautions
7.1.4.5 RIV limits
7.1.5 Short circuit discharge test
31 7.1.6 Performance test
7.1.6.1 Test sample
7.1.6.2 Conditioning of the sample before the test
7.1.6.3 Overvoltage test
32 7.1.6.4 Acceptance criteria
7.1.6.5 Validity of test
7.1.6.5.1 Dielectric design limits
7.1.6.5.2 Test unit design limits
33 7.1.7 Fuse disconnect test for internally fused capacitors
7.1.7.1 Validity of test
7.1.7.2 Conditioning of the sample before test
7.1.7.3 Test procedures
34 7.1.7.4 Capacitance measurement
7.1.7.5 Voltage test across the open fuse
7.1.7.6 Inspection of the unit
7.2 Production tests
7.2.1 Short-time overvoltage test
35 7.2.1.1 Terminal-to-terminal test
7.2.1.2 Terminals-to-case test (not applicable to capacitors having one terminal common to the case)
7.2.2 Capacitance test
7.2.3 Leak test
36 7.2.4 Discharge resistor test
7.2.5 Loss determination test
7.2.6 Fuse capability tests for internally fused capacitors
37 Annex A (informative) Bibliography
38 Annex B (normative)Test procedure for the disconnecting test on internal fuses
IEEE 18 2013
$35.21