Shopping Cart

No products in the cart.

BSI PD IEC TR 61850-90-14:2021:2022 Edition

$215.11

Communication networks and systems for power utility automation – Using IEC 61850 for FACTS (flexible alternate current transmission systems), HVDC (high voltage direct current) transmission and power conversion data modelling

Published By Publication Date Number of Pages
BSI 2022 256
Guaranteed Safe Checkout
Category:

If you have any questions, feel free to reach out to our online customer service team by clicking on the bottom right corner. We’re here to assist you 24/7.
Email:[email protected]

PDF Catalog

PDF Pages PDF Title
2 undefined
4 CONTENTS
13 FOREWORD
15 INTRODUCTION
16 1 Scope
1.1 Namespace name and version
17 1.2 Code Component distribution
Tables
Table 1 – Attributes of (Tr)IEC 61850-90-14:2020A namespace
Table 2 – Tracking information of (Tr)IEC 61850-90-14:2020A namespace building-up
18 2 Normative references
19 3 Terms, definitions, variable symbols and abbreviated terms
3.1 Terms and definitions
3.2 Variable symbols
20 3.3 Abbreviated terms
22 4 FACTS Controllers and power conversion definition and specific requirements – Definitions of FACTS and power conversions
4.1 Flexible AC transmission system
4.1.1 General
4.1.2 Examples of FACTS for shunt compensation
4.1.3 Examples of series compensation
23 4.2 Power conversions systems
5 Scope clarification and definition
5.1 General
Figures
Figure 1 – Conceptual view of communication paths considered in this report
24 5.2 Communication requirements and data flow
5.2.1 General
Figure 2 – Levels and logical interfaces in substation automation systems
25 5.2.2 Mapping to interfaces defined in IEC 61850-5
Figure 3 – Data flow of a FACTS / Power Conversion controller
26 5.3 SCL modelling requirements
6 Shared use cases for FACTS controllers and Power Conversion
6.1 Commonly used actors
Figure 4 – Shared use cases for FACTS controllers and Power Conversion
27 Table 3 – Actors used in use cases
28 6.2 Use case: Control system redundancy
6.2.1 Communication redundancy
6.2.2 Functional application redundancy
Figure 5 – Hierarchal view of commonly used actors
29 6.3 Use case: Control location and authority
Figure 6 – Typical redundant FACTS/Power Conversion control system setup
30 Figure 7 – Authority for control of devices fromdifferent control levels and locations
31 6.4 Use case: System status and generic sequence processing
6.4.1 General
Figure 8 – Typical scheme for implementation of control authority for function groups
32 Figure 9 – System status / generic sequence processing
33 Table 4 – Use case: System status and generic sequence processing
35 6.4.2 ASEQ Application Overview
36 6.4.3 Application example HVDC
Figure 10 – ASEQ Application Overview (using the most important Data Objects)
37 Figure 11 – Exemplary sequence diagram, not applicable to all use cases
39 6.4.4 Application example Shunt connected FACTS device
Figure 12 – Operating states of a FACTS shunt device
41 Figure 13 – Use case diagrams of State use case
42 6.5 Use case: Cooling system
6.5.1 General
Table 5 – Use case: State
43 Figure 14 – Cooling control use cases
Table 6 – Use case: Cooling system
45 6.5.2 List of logical nodes for modelling of a Water based cooling system
6.5.3 Example of modelling a cooling system
Table 7 – Logical nodes for modelling a water-based cooling system
46 Figure 15 – Cooling control modelling example
47 6.6 Use case: Control and supervision of Harmonic filter
Figure 16 – Harmonic filter control and supervision
48 6.7 Use case: Control of external devices as part of automatic reactive power control
6.7.1 General
Table 8 – Use case: Control and supervision of Harmonic filter
49 Figure 17 – Use case Control of external reactive components
50 Table 9 – Use case: Control of external banks mode
51 6.7.2 Modelling example for external device control of a FACTS shunt device
Figure 18 – Modelling external banks for reactive power optimization.
Table 10 – Process data for Control of external banks mode
52 6.8 Use case: Converter status during degraded operation
Figure 19 – Use case Converter status
53 6.9 Use case: Power Semiconductor application monitoring
6.9.1 General
Figure 20 – Example of a hierarchical arrangement of power electronic units
Table 11 – Use case: Get Converter Status
54 Figure 21 – Arrangement of 12 thyristor valvesin a 12-pulse converter configuration
55 Figure 22 – Use cases for semiconductor application monitoring
Table 12 – Use case: Semiconductor application monitoring
57 6.9.2 Equipment Indications and Properties
Table 13 – Thyristor controlled reactive components
Table 14 – Process information for Thyristor controlled reactive component
58 6.9.3 Modelling requirements, results, conclusion
6.10 Use case: Coordinated control between FACTS and other Power Conversion devices
6.10.1 General
Figure 23 – Schematic view of two SVC devices connected in parallel.
59 Figure 24 – Coordination between two FACTS / Power Conversion
Figure 25 – Use case diagram for coordinated FACTS device operation
60 6.10.2 Use case descriptions
Figure 26 – Coordination signals between two SVCs
Table 15 – Coordinated FACTS device operation use case
61 6.10.3 Optimized signal list and process information for modelling
Figure 27 – Optimized signal list for IEC 61850
62 6.11 FACTS and Power Conversion Protection
6.11.1 General
6.11.2 Use case Protective action
Table 16 – Process information for coordinated control mode
63 Figure 28 – Use cases for Control System Protective Actions
Table 17 – Use cases for Control System Protective Actions
64 6.11.3 Modelling summary
7 FACTS
7.1 General
65 7.2 Shunt connected FACTS devices
7.2.1 General
7.2.2 Overview
Figure 29 – V-I diagram of a generic SVC
Table 18 – Classification of FACTS Controllers
66 7.2.3 Use cases for Shunt Connected FACTS device
Figure 30 – V-I diagram of a generic STATCOM
Figure 31 – Use cases for substation control of a shunt connected FACTS device.
67 Table 19 – Main use cases of FACTS Shunt device
68 Figure 32 – Example of operating states of a FACTS shunt device
Figure 33 – Example of control modes of a shunt connected FACTS device visualized as a state machine
69 Figure 34 – Use cases for changing states of FACTS device
70 Figure 35 – Change of control mode use case
Table 20 – Changing states of FACTS device use cases
71 Table 21 – Main control functions
Table 22 – Supplementary control functions
Table 23 – Additional control mode functions
Table 24 – Use case: Control Mode selection
72 Figure 36 – Sub-use cases of Configuration use case
Table 25 – Change Control mode process data
73 Table 26 – Use case: Configuration of control mode
74 Figure 37 – Automatic Reactive Power Control use case
Table 27 – Automatic Reactive Power Control process data
75 Figure 38 – Non-automatic control mode use case
Table 28 – Non-automatic control mode use case
Table 29 – Non-automatic control mode setpoints
76 Figure 39 – Simplified fixed reactive power regulator block diagram
Figure 40 – Simplified voltage regulator block diagramof automatic voltage control mode for an SVC
Table 30 – Reactive power control mode process data
77 Table 31 – Additional functions in Automatic Voltage Control mode
Table 32 – Voltage Control mode process data
78 Figure 41 – Shunt connected FACTS device operating characteristicwith slow susceptance/reactive power regulator
Table 33 – Process data for slow susceptance regulator modeor reactive power regulator
79 Figure 42 – Example of automatic voltage control system with additional reference signal for POD
Table 34 – POD mode settings and controls
80 Figure 43 – Activation of Gain Optimizer Function
Figure 44 – Reset Gain Command Interaction Diagram
81 Table 35 – Use case: Gain
Table 36 – Gain Supervision mode data objects
Table 37 – Gain Optimizer mode data objects
82 Table 38 – Protective Control Functions of SVC use cases
83 7.3 Series connected FACTS devices
7.3.1 Overview
7.3.2 Use case of Series Compensation
Table 39 – Protective Control Functions of a VSC use cases
84 Figure 45 – Series Compensation Use case
Table 40 – Use case: Series Compensation
85 Figure 46 – Use cases for Fixed Series Capacitors
86 Figure 47 – Use case for Capacitor Discharge function
Table 41 – Use case: Fixed Series compensation
87 Figure 48 – Use case for By-passing
Table 42 – Use case: Capacitor Discharge Function
88 Table 43 – Bypassing of series capacitor
89 Figure 49 – Sub use cases for Lock-out use case
Table 44 – Use case: Lock-out and temporary block insertion
91 Figure 50 – Sub use cases for auto reinsertion
92 Figure 51 – Interaction of Automatic Reinsertion function with other functions
Table 45 – Use case: Auto reinsertion
93 Figure 52 – Example of states in Automatic reinsertion function
94 Table 46 – Transition description for Figure 55
95 Figure 53 – SLD of Fast Protective Equipment
96 Figure 54 – Use case for Fast Protective equipment
97 Figure 55 – SLD symbol for Metal Oxide Varistor
Table 47 – Use case: Fast Protective Equipment
98 Figure 56 – Zink Oxide Varistor use case
99 Figure 57 – MSSR Use case diagram
Table 48 – Use case: Zink Oxide Varistor
100 Table 49 – Use case: MSSR
Table 50 – Indications and measurements
101 7.3.3 Series Capacitors protections
Figure 58 – Additional use cases for TCSC
Table 51 – Use case: TCSC
102 Table 52 – Overview of typical series capacitor bank protections,based on IEC 60143-2
103 Figure 59 – SC Protection function Interface
104 Table 53 – Use case: SC protection functions
105 Table 54 – Series protections modelling guideline
106 8 Power Conversion
8.1 Power Converters
8.1.1 Overview
Figure 60 – Varistor Overload Protection use case
Figure 61 – Varistor Failure Protection use case
107 8.1.2 Power converter use cases with signal and data item descriptions
Figure 62 – Generic application of Power Conversion
108 Figure 63 – Use Active / reactive power operation mode selection
Table 55 – Use case: Active / reactive power operation mode selection
110 Figure 64 – Active power control use case
111 Table 56 – Use case: Active power control
112 Figure 65 – P-f characteristic
113 Figure 66 – P-V characteristic
Table 57 – New data items for P-f-characteristics
114 Figure 67 – Example: Simple 4-point P-DCVol characteristic
Table 58 – New data items for P-V
115 Figure 68 – Example: Sophisticated 9-point P-DCVol characteristic
Table 59 – New data items for P-DCVol
116 Figure 69 – P_Fixed
Table 60 – New data items for fixed active power
Table 61 – New data items for fixed DC current
Table 62 – New data items for Active power (general)
117 Figure 70 – Reactive power control use case
118 Figure 71 – Q-V characteristic
Table 63 – Reactive Power control use case (Power Conversion)
119 Figure 72 – Q_Fixed
Table 64 – New data items for Q-V
Table 65 – New data items for Q_fixed
120 Figure 73 – Phi_Fixed
Table 66 – New data items for Q_Band
Table 67 – New data items for Phi_Fixed
121 Figure 74 – V_Band
Table 68 – New data items for V_Band
Table 69 – New data items for Reactive power (general),
122 Table 70 – Use case Reactive power (Power Conversion)
123 Figure 75 – Use case
124 8.2 HVDC
8.2.1 Overview
Table 71 – Intermediate DC circuit use case
125 8.2.2 HVDC use cases with signal and data item descriptions
Figure 76 – Typical HVDC setup
126 Figure 77 – Use case Power direction change
127 Table 72 – Use case Power direction change
128 Figure 78 – Use case Run-up/Run-back modules
129 Table 73 – Use case Run-up/Run-back modules
130 Figure 79 – General AEPC functional characteristic
131 Figure 80 – Use case Automatic Emergency Power Control
Table 74 – Use case Automatic Emergency Power Control
133 Table 75 – AEPC data modelling example
135 Figure 81 – DC Line fault recovery sequence
136 Table 76 – Use case: DC Line fault recovery sequence
138 Figure 82 – Examples for typical HVDC DC-Yard configurations
139 Figure 83 – DC Yard configuration
Table 77 – Use case: DC Yard configuration
140 Figure 84 – Coordinated mode switchover
141 Table 78 – Use case: Coordinated mode switchover
142 Figure 85 – Function mode switchover
143 Table 79 – Use case: Function mode switchover
147 Figure 86 – Tap changer control and supervision
Table 80 – Use case: Tap changer control and supervision
149 8.3 SFC – Static Frequency Converter
8.3.1 Overview
8.3.2 SFC use cases with signal and data item descriptions
Figure 87 – Typical SFC setup
150 Figure 88 – Control by external reference
Table 81 – Use case: Control by external reference
151 9 Data model
9.1 Abbreviated terms used in data object names
9.2 Logical node preliminaries
9.2.1 Package LogicalNodes_90_14
Table 82 – Normative abbreviations for data object names
152 Figure 89 – Class diagram LogicalNodes_90_14::LogicalNodes_90_14
153 Figure 90 – Class diagram AbstractLNs::AbstractLNs
154 Table 83 – Data objects of FACTSandPowerConversionLN
155 Table 84 – Data objects of ReactiveComponentInterfaceLN
156 Table 85 – Data objects of EmergencyPowerControl_PowerRunUpRunBackLN
157 Figure 91 – Class diagram LNGroupA::LNGroupANew
158 Figure 92 – Class diagram LNGroupA::LNGroupAExt
159 Table 86 – Data objects of ARCOExt
161 Table 87 – Data objects of AFLK
162 Table 88 – Data objects of AMSR
164 Table 89 – Data objects of APOD
165 Table 90 – Data objects of AEPC
167 Table 91 – Data objects of ARUB
168 Table 92 – Data objects of ASEQ
170 Table 93 – Data objects of ATCCExt
173 Table 94 – Data objects of ARPC
174 Table 95 – Data objects of AVCOExt
176 Figure 93 – Class diagram LNGroupC::LNGroupCNew
177 Table 96 – Data objects of CCGRExt
179 Table 97 – Data objects of CCAP
180 Table 98 – Data objects of CJCL
182 Table 99 – Data objects of CFPC
185 Table 100 – Data objects of CREL
186 Figure 94 – Class diagram LNGroupF::LNGroupFNew
Table 101 – Data objects of FFUN
188 Figure 95 – Class diagram LNGroupP::LNGroupPNew
189 Table 102 – Data objects of PLFR
191 Table 103 – Data objects of PMHE
192 Table 104 – Data objects of PMHT
194 Table 105 – Data objects of PMOV
195 Table 106 – Data objects of PFPE
196 Figure 96 – Class diagram LNGroupR::LNGroupRNew
197 Table 107 – Data objects of RBPF
198 Table 108 – Data objects of RRIN
200 Figure 97 – Class diagram LNGroupS::LNGroupSNew
201 Table 109 – Data objects of SCND
202 Table 110 – Data objects of SFLW
203 Table 111 – Data objects of SFPE
205 Table 112 – Data objects of SPES
206 Figure 98 – Class diagram LNGroupT::LNGroupT
207 Table 113 – Data objects of TCND
208 Figure 99 – Class diagram LNGroupX::LNGroupXNew
209 Table 114 – Data objects of XFPE
211 Table 115 – Data objects of XDCC
212 Figure 100 – Class diagram LNGroupZ::LNGroupZNew
213 Figure 101 – Class diagram LNGroupZ::LNGroupZNew2
Table 116 – Data objects of ZCONExt
215 Table 117 – Data objects of ZHAF
217 Table 118 – Data objects of ZLINExt
219 Table 119 – Data objects of ZMOV
220 Table 120 – Data objects of ZTCRExt
222 Table 121 – Data objects of ZCAPExt
223 Table 122 – Data objects of ZREAExt
224 9.3 Data object name semantics and enumerations
9.3.1 Data semantics
Table 123 – Attributes defined on classes of LogicalNodes_90_14 package
233 9.3.2 Enumerated data attribute types
234 Table 124 – Literals of ActivePowerModKind
Table 125 – Literals of AutoReinsertionKind
235 Table 126 – Literals of ChargingDCCircuitStateKind
Table 127 – Literals of ConfigurationDCCircuitStateKind
Table 128 – Literals of ConnectionDCStateKind
236 Table 129 – Literals of ConverterTypKind
Table 130 – Literals of EPCModKind
Table 131 – Literals of EPCTypKind
237 Table 132 – Literals of ForcedOperationControlModKind
Table 133 – Literals of GenerationDCStateKind
Table 134 – Literals of HarmonicFilterTypKind
238 Table 135 – Literals of OperationCommandKind
Table 136 – Literals of OperationModKind
Table 137 – Literals of OperationStateKind
239 Table 138 – Literals of PowerDirectionalModKind
Table 139 – Literals of ReactivePowerModKind
Table 140 – Literals of RubModKind
240 10 SCL Extensions
Table 141 – Literals of RubTypKind
Table 142 – Literals of SequenceStateKind
Table 143 – Literals of ThyristorBranchFunctionKind
241 Annex A (informative)Introduction to FACTS applications
A.1 Static Var Compensator overview
Figure A.1 – Example SVC circuit diagram of an SVC
242 Figure A.2 – SLD of example SVC with reference designations
243 A.2 Static Synchronous Compensator overview
Figure A.3 – Simplified STATCOM Circuit diagram
244 Figure A.4 – Example of SLD for a STATCOM with reference designations
245 A.3 Fixed series compensation
Figure A.5 – Hybrid solution with two VSC, TSC and TCR branch
Figure A.6 – Single Line Diagram of a one segment Series Capacitor.
246 A.4 Mechanically Switched Series Reactor (MSSR)
A.5 Thyristor Controlled Series Capacitor (TCSC)
Figure A.7 – Generic SLD of MSSR/OLC FACTS device
247 Figure A.8 – SLD of TCSC and transmitted power vs. transmission angle
248 Figure A.9 – Generic TCSC control system
249 Annex B (informative)Modelling guideline and examples
B.1 Indication and control of breakers and switches
B.2 Power transformer
B.3 Metering and measured values
B.4 Examples of modelling of FACTS Shunt devices
Table B.1 – Suggested modelling of measured and meter values.
250 Figure B.1 – Logical nodes representing SLD equipment SVC
251 Figure B.2 – Modelling example of SVC functionality
252 Figure B.3 – Logical nodes representing SLD equipment, STATCOM
253 B.5 Example of modelling of Fixed Series Compensation
Figure B.4 – Logical nodes representing SLD equipment,Control and Protection, Fixed SC
254 B.6 Examples of modelling of HVDC transmission
Figure B.5 – Logical Nodes representing HVDC specific equipment and functionality
255 Bibliography
BSI PD IEC TR 61850-90-14:2021
$215.11