{"id":334535,"date":"2024-10-19T23:19:37","date_gmt":"2024-10-19T23:19:37","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/fema-p-2018seismicevalolderconcretebuildings-2018\/"},"modified":"2024-10-25T22:18:01","modified_gmt":"2024-10-25T22:18:01","slug":"fema-p-2018seismicevalolderconcretebuildings-2018","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/fema\/fema-p-2018seismicevalolderconcretebuildings-2018\/","title":{"rendered":"FEMA P 2018SeismicEvalOlderConcreteBuildings 2018"},"content":{"rendered":"
None<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
1<\/td>\n | 00-FEMAP-2018_Cover <\/td>\n<\/tr>\n | ||||||
2<\/td>\n | 01-FEMA_P-2018_Titlepage <\/td>\n<\/tr>\n | ||||||
4<\/td>\n | 02-FEMA_P-2018_Foreword <\/td>\n<\/tr>\n | ||||||
6<\/td>\n | 03-FEMA_P-2018_Preface <\/td>\n<\/tr>\n | ||||||
8<\/td>\n | 04-FEMA_P-2018_ToC <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 05-FEMA_P-2018_LoF <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 06-FEMA_P-2018_LoT <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | 07-FEMA_P-2018_Ch1 1.1 ATC-78 Project Series <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | 1.2 Evaluation Methodology <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 1.3 Comparison with ASCE\/SEI 41 <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | 1.4 Policy Implications <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | 1.5 Report Organization and Content <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | 08-FEMA_P-2018_Ch2 2.1 Scope and Applicability 2.1.1 Applicability <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | 2.1.2 Seismic Deficiencies that are not Considered in the Methodology 2.1.3 Buildings with Concrete Components that are not Considered in the Methodology 2.1.3.1 Tilt-Up Buildings <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | 2.1.3.2 Residential Bearing Wall Buildings with Precast Slabs 2.1.3.3 Lift-Slab Buildings 2.2 Overview of the Evaluation Methodology <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | 2.2.1 Overview of Key Calculation Procedures <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | 2.2.2 Early Identification of Lower Seismic Risk Buildings 2.2.3 Early Identification of Exceptionally High Seismic Risk Buildings <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | 2.3 Use of Alternate Analysis Procedures <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | 09-FEMA_P-2018_Ch3 3.1 As-Built Information <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | 3.2 Site Investigation 3.3 Seismic Hazard <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | 3.4 Material Properties 3.4.1 General 3.4.2 Concrete and Reinforcing Steel 3.4.3 Masonry Infill <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | 3.5 Condition of Structural Components 3.6 Structural Load Path Requirements 3.6.1 Diaphragm Continuity <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | 3.6.2 Concrete Element Interconnectivity <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | 3.7 Penthouse and Other Rooftop Structures <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | 10-FEMA_P-2018_Ch4 4.1 Introduction 4.2 Axial Loads on Columns and Walls 4.2.1 Expected Gravity Loads 4.2.2 Earthquake Axial Loads <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | 4.2.3 Load Combinations 4.3 Component Strength Calculations 4.3.1 General <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | 4.3.2 Concrete Column Strength 4.3.2.1 Column Shear Strength <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | 4.3.2.2 Column Flexural Strength 4.3.2.3 Effects of Column Lap Splices on Flexural Strength 4.3.3 Beam-Column Joint Shear Strength <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | 4.3.4 Slab-Column Frame Strength and Integrity Requirements <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | 4.3.5 Concrete Wall Strength 4.3.5.1 Wall Shear Strength 4.3.5.2 Wall Flexural Strength 4.3.6 Infilled Frame Strength 4.3.6.1 Masonry Infill Panel Strength <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | 4.3.6.2 Infilled Bay Strength <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | 4.4 Column Shear Strength Ratio 4.4.1 Column Shear Capacity in a Typical Story <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | 4.4.2 Slab-Column Frames <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | 11-FEMA_P-2018_Ch5 5.1 Introduction <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | 5.2 Classification of Concrete Components 5.2.1 Reinforced Concrete Columns 5.2.2 Reinforced Concrete Structural Walls <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | 5.3 Classification of Building Systems 5.3.1 Frame Systems 5.3.2 Frame-Wall Systems <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | 5.3.3 Bearing Wall Systems 5.3.4 Infilled Frame Systems <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | 5.4 Wall Index and Wall Strength Index 5.4.1 Wall Index <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | 5.4.2 Wall Strength Index 5.4.3 Identification of Lower Seismic Risk Buildings using the Wall Strength Index <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | 5.5 Effective Yield Strength 5.5.1 Plastic Mechanism Base-Shear Strength for Frames and Walls <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | 5.5.2 Plastic Mechanism Base-Shear Strength for Infilled Frame Systems <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | 5.5.3 Plastic Mechanism Base-Shear Strength for Mezzanines and Other Configurations <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | 5.5.4 Three-Dimensional Considerations <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | 5.5.5 Base Shear Ratio 5.6 Effective Fundamental Period <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | 5.6.1 Determination of Effective Period by Formula <\/td>\n<\/tr>\n | ||||||
87<\/td>\n | 5.6.2 Determination of Effective Period by Structural Analysis 5.7 Global Demand-to-Capacity Ratio <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | 5.8 Identification of Lower Seismic Risk Buildings 5.8.1 Essentially Elastic Buildings 5.9 Identification of Exceptionally High Seismic Risk Buildings 5.9.1 Exceptionally Weak Buildings <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | 5.9.2 Discontinuous Walls Supported on Columns, Wall Piers, or Girders 5.9.2.1 Vertical Capacity Check on Columns and Wall Piers <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | 5.9.2.2 Girder Vertical Capacity Check <\/td>\n<\/tr>\n | ||||||
91<\/td>\n | 5.10 Pounding 5.10.1 Shorter Interfering Building 5.10.1.1 Floors Align 5.10.1.2 Floors Not Aligned 5.10.2 Taller Interfering Building 5.10.2.1 Floors Aligned <\/td>\n<\/tr>\n | ||||||
92<\/td>\n | 5.10.2.2 Floors Not Aligned <\/td>\n<\/tr>\n | ||||||
93<\/td>\n | 12-FEMA_P-2018_Ch6 6.1 Introduction 6.2 Identify Critical Stories <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | 6.3 Identify Critical Components 6.3.1 Critical Columns 6.3.2 Critical Slab-Column Connections <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | 6.3.3 Critical Beam-Column Corner Connections 6.3.4 Discontinuous Columns 6.4 Calculate Global Seismic Drift Demand <\/td>\n<\/tr>\n | ||||||
96<\/td>\n | 6.5 Calculate Story Drift Demand <\/td>\n<\/tr>\n | ||||||
97<\/td>\n | 6.5.1 Adjustment of Story Drift Demand for P-Delta <\/td>\n<\/tr>\n | ||||||
98<\/td>\n | 6.6 Calculate Drift Demands on Critical Components 6.6.1 Adjusted Drift Demand on Critical Components 6.6.2 Torsional Amplification Factor 6.6.3 Drift Factor 6.6.3.1 Drift Factor for Columns <\/td>\n<\/tr>\n | ||||||
99<\/td>\n | 6.6.3.2 Drift Factor for Slab-Column Connections and Beam-Column Corner Connections 6.7 Calculate Drift Capacity of Critical Components 6.7.1 Drift Capacity of Critical Columns <\/td>\n<\/tr>\n | ||||||
101<\/td>\n | 6.7.2 Drift Capacity of Critical Slab-Column Connections <\/td>\n<\/tr>\n | ||||||
102<\/td>\n | 6.7.3 Drift Capacity of Critical Beam-Column Corner Connections 6.8 Determine Column Ratings <\/td>\n<\/tr>\n | ||||||
104<\/td>\n | 6.8.1 Discontinuous Columns 6.9 Determine Story Ratings <\/td>\n<\/tr>\n | ||||||
106<\/td>\n | 13-FEMA_P-2018_Ch7 7.1 Introduction 7.2 Identify Critical Stories <\/td>\n<\/tr>\n | ||||||
107<\/td>\n | 7.3 Identify Critical Components 7.3.1 Critical Columns 7.3.1.1 Critical Columns Integral with Walls <\/td>\n<\/tr>\n | ||||||
108<\/td>\n | 7.3.2 Critical Walls and Vertical Wall Segments 7.3.2.1 Critical Walls with Integral Columns 7.3.3 Critical Slab-Column Connections <\/td>\n<\/tr>\n | ||||||
109<\/td>\n | 7.3.4 Critical Beam-Column Corner Connections 7.3.5 Discontinuous Columns 7.4 Calculate Global Seismic Drift Demand <\/td>\n<\/tr>\n | ||||||
110<\/td>\n | 7.5 Calculate Story Drift Demand <\/td>\n<\/tr>\n | ||||||
111<\/td>\n | 7.6 Calculate Drift Demands on Critical Components 7.6.1 Adjusted Drift Demand on Critical Components <\/td>\n<\/tr>\n | ||||||
112<\/td>\n | 7.6.2 Torsional Amplification Factor 7.6.2.1 Calculation of the Maximum Torsional Amplification Factor 7.6.2.2 Calculation of Torsional Ratio <\/td>\n<\/tr>\n | ||||||
113<\/td>\n | 7.6.2.3 Identification of Exceptionally High Seismic Risk Buildings based on the Torsional Ratio 7.6.3 Drift Factor 7.6.3.1 Drift Factor for Columns <\/td>\n<\/tr>\n | ||||||
114<\/td>\n | 7.6.3.2 Drift Factor for Slab-Column Connections and Beam-Column Corner Connections 7.6.3.3 Drift Factor for Vertical Wall Segments 7.7 Calculate Drift Capacity of Critical Components 7.7.1 Drift Capacity of Critical Columns <\/td>\n<\/tr>\n | ||||||
116<\/td>\n | 7.7.2 Drift Capacity of Critical Slab-Column Connections <\/td>\n<\/tr>\n | ||||||
117<\/td>\n | 7.7.3 Drift Capacity of Critical Beam-Column Corner Connections 7.7.4 Drift Capacity of Critical Walls and Vertical Wall Segments <\/td>\n<\/tr>\n | ||||||
119<\/td>\n | 7.7.4.1 Walls with Integral Columns or Boundary Elements <\/td>\n<\/tr>\n | ||||||
120<\/td>\n | 7.8 Determine Column and Wall Ratings <\/td>\n<\/tr>\n | ||||||
122<\/td>\n | 7.8.1 Discontinuous Columns 7.9 Determine Story Ratings <\/td>\n<\/tr>\n | ||||||
124<\/td>\n | 14-FEMA_P-2018_Ch8 8.1 Introduction 8.2 Identify Critical Stories <\/td>\n<\/tr>\n | ||||||
125<\/td>\n | 8.3 Identify Critical Components 8.3.1 Critical Walls and Vertical Wall Segments <\/td>\n<\/tr>\n | ||||||
126<\/td>\n | 8.3.2 Other Critical Components 8.4 Calculate Global Seismic Drift Demand <\/td>\n<\/tr>\n | ||||||
127<\/td>\n | 8.5 Calculate Story Drift Demand <\/td>\n<\/tr>\n | ||||||
128<\/td>\n | 8.6 Calculate Drift Demands on Critical Components 8.6.1 Adjusted Drift Demand on Critical Components 8.6.2 Torsional Amplification Factor 8.6.3 Drift Factor <\/td>\n<\/tr>\n | ||||||
129<\/td>\n | 8.7 Calculate Drift Capacity of Critical Components 8.7.1 Drift Capacity of Critical Walls and Vertical Wall Segments <\/td>\n<\/tr>\n | ||||||
131<\/td>\n | 8.7.1.1 Walls with Integral Columns or Boundary Elements <\/td>\n<\/tr>\n | ||||||
132<\/td>\n | 8.7.2 Drift Capacity of Other Critical Components 8.8 Determine Wall and Column Ratings 8.8.1 Determine Wall Ratings 8.8.2 Determine Column Ratings 8.9 Determine Story Ratings <\/td>\n<\/tr>\n | ||||||
134<\/td>\n | 15-FEMA_P-2018_Ch9 9.1 Introduction <\/td>\n<\/tr>\n | ||||||
135<\/td>\n | 9.2 Identify Critical Stories 9.3 Identify Critical Components 9.3.1 Critical Columns in Infilled Frame Systems 9.3.2 Other Critical Components <\/td>\n<\/tr>\n | ||||||
136<\/td>\n | 9.4 Calculate Global Seismic Drift Demand <\/td>\n<\/tr>\n | ||||||
137<\/td>\n | 9.5 Calculate Story Drift Demand 9.6 Calculate Drift Demands in Critical Components 9.6.1 Adjusted Drift Demand on Critical Components <\/td>\n<\/tr>\n | ||||||
138<\/td>\n | 9.6.2 Torsional Amplification Factor 9.6.2.1 Calculation of Maximum Torsional Amplification Factor 9.6.2.2 Calculation of Torsional Ratio <\/td>\n<\/tr>\n | ||||||
139<\/td>\n | 9.6.2.3 Identification of Exceptionally High Seismic Risk Buildings based on the Torsional Ratio 9.6.3 Drift Factor <\/td>\n<\/tr>\n | ||||||
140<\/td>\n | 9.6.3.1 Drift Factor for Infilled-Frame Columns 9.6.3.2 Drift Factor for Other Components 9.7 Calculate Drift Capacity of Critical Components 9.7.1 Drift Capacity of Critical Columns in Infilled Frame Systems <\/td>\n<\/tr>\n | ||||||
142<\/td>\n | 9.7.2 Drift Capacity of Other Critical Components 9.7.3 Drift Capacity of Critical Walls and Vertical Wall Segments <\/td>\n<\/tr>\n | ||||||
143<\/td>\n | 9.8 Determine Column and Wall Ratings 9.8.1 Determine Ratings for Columns in Infilled Frame Systems <\/td>\n<\/tr>\n | ||||||
144<\/td>\n | 9.8.2 Determine Ratings for Other Critical Components 9.9 Determine Story Ratings <\/td>\n<\/tr>\n | ||||||
146<\/td>\n | 16-FEMA_P-2018_Ch10 10.1 Introduction 10.2 Determine Building Rating 10.3 Recommended Building Risk Levels <\/td>\n<\/tr>\n | ||||||
147<\/td>\n | 10.3.1 Exceptionally High Seismic Risk Buildings 10.3.2 High Seismic Risk Buildings 10.3.3 Lower Seismic Risk Buildings <\/td>\n<\/tr>\n | ||||||
148<\/td>\n | 17-FEMA_P-2018_AppA A.1 Introduction A.2 Column Plastic Rotation Capacity Determination <\/td>\n<\/tr>\n | ||||||
149<\/td>\n | A.2.1 Plastic Rotation Capacities for Flexure-Critical Columns A.2.2 Plastic Rotation Capacities for Flexure-Shear and Shear-Critical Columns A.2.3 Bias in Plastic Rotation Capacity Predictions <\/td>\n<\/tr>\n | ||||||
151<\/td>\n | A.2.4 Comparison of Plastic Rotation Capacity Prediction Methods <\/td>\n<\/tr>\n | ||||||
153<\/td>\n | A.2.5 Uncertainty in Plastic Rotation Capacities <\/td>\n<\/tr>\n | ||||||
154<\/td>\n | A.2.6 Elastic Component of Column Drift Capacity A.2.7 Drift Capacity of Columns with Inadequate Lap Splices A.3 Slab-Column Connection Drift Capacity Determination <\/td>\n<\/tr>\n | ||||||
157<\/td>\n | 18-FEMA_P-2018_AppB B.1 Overview B.2 Structural Reliability Methods for Computing the Column Rating <\/td>\n<\/tr>\n | ||||||
159<\/td>\n | 19-FEMA_P-2018_AppC C.1 Overview C.2 Probability Theory for Determining Probability of Story Collapse <\/td>\n<\/tr>\n | ||||||
160<\/td>\n | C.3 Development of Story Ratings <\/td>\n<\/tr>\n | ||||||
162<\/td>\n | 20-FEMA_P-2018_AppD D.1 Overview <\/td>\n<\/tr>\n | ||||||
163<\/td>\n | D.2 Numerical Simulation D.2.1 Buildings Analyzed <\/td>\n<\/tr>\n | ||||||
164<\/td>\n | D.2.2 Modeling <\/td>\n<\/tr>\n | ||||||
165<\/td>\n | D.2.3 Ground Motion Selection and Scaling D.2.4 Collapse <\/td>\n<\/tr>\n | ||||||
166<\/td>\n | D.2.5 Results <\/td>\n<\/tr>\n | ||||||
168<\/td>\n | D.3 Analytical Investigation of WSI <\/td>\n<\/tr>\n | ||||||
170<\/td>\n | D.4 Limitations <\/td>\n<\/tr>\n | ||||||
171<\/td>\n | D.5 Conclusions <\/td>\n<\/tr>\n | ||||||
172<\/td>\n | 21-FEMA_P-2018_AppE E.1 Overview <\/td>\n<\/tr>\n | ||||||
173<\/td>\n | E.2 Modeling E.3 Ground Motion Selection and Scaling E.4 Collapse E.5 Development of Criteria for Exceptionally Weak Frame Buildings <\/td>\n<\/tr>\n | ||||||
176<\/td>\n | E.6 Investigation of Criteria for Exceptionally Weak Frame-Wall Buildings <\/td>\n<\/tr>\n | ||||||
178<\/td>\n | 22-FEMA_P-2018_AppF F.1 Introduction F.2 Performance of Connections with Discontinuous Beam Bottom Longitudinal Reinforcement <\/td>\n<\/tr>\n | ||||||
179<\/td>\n | F.3 Strength of Joints in Beam-Column Connections without Joint Transverse Reinforcement <\/td>\n<\/tr>\n | ||||||
180<\/td>\n | F.4 Effect of Joint Eccentricity on Joint and Column Behavior <\/td>\n<\/tr>\n | ||||||
182<\/td>\n | F.5 Axial Failure of Beam-Column Connections <\/td>\n<\/tr>\n | ||||||
183<\/td>\n | 23-FEMA_P-2018_AppG G.1 Frame Buildings <\/td>\n<\/tr>\n | ||||||
186<\/td>\n | G.2 Frames with Deep Spandrels G.3 Pier-Spandrel Systems <\/td>\n<\/tr>\n | ||||||
190<\/td>\n | G.4 Wall and Frame-Wall Buildings <\/td>\n<\/tr>\n | ||||||
192<\/td>\n | 24-FEMA_P-2018_AppH H.1 Introduction H.2 Studies of the SDOF Drift Demand H.2.1 Basic Procedure to Calculate SDOF Drift Demand <\/td>\n<\/tr>\n | ||||||
193<\/td>\n | H.2.2 Comparison with Results of Nonlinear Response History Analyses <\/td>\n<\/tr>\n | ||||||
196<\/td>\n | H.3 Studies of the Story Drift Demand H.3.1 Basic Procedure to Calculate Story Drift Demand H.3.2 Bare Frames <\/td>\n<\/tr>\n | ||||||
205<\/td>\n | H.3.3 Frames and Walls H.3.3.1 Case 1: Frame Plus One Continuous Wall <\/td>\n<\/tr>\n | ||||||
209<\/td>\n | H.3.3.2 Case 2: Frame Plus Two Continuous Walls <\/td>\n<\/tr>\n | ||||||
210<\/td>\n | H.3.4 Frames with Walls Discontinuous in the First Story <\/td>\n<\/tr>\n | ||||||
213<\/td>\n | H.3.5 Frames with Walls Discontinuous in Upper Stories <\/td>\n<\/tr>\n | ||||||
218<\/td>\n | H.3.6 Buildings with Shear-Critical Walls <\/td>\n<\/tr>\n | ||||||
220<\/td>\n | H.3.6.1 Static Response: Pushover Analyses <\/td>\n<\/tr>\n | ||||||
222<\/td>\n | H.3.6.1 Dynamic Response <\/td>\n<\/tr>\n | ||||||
229<\/td>\n | 25-FEMA_P-2018_AppI I.1 Introduction <\/td>\n<\/tr>\n | ||||||
230<\/td>\n | I.2 Identify Critical Stories <\/td>\n<\/tr>\n | ||||||
232<\/td>\n | I.3 Simulation of Collapse of Torsionally-Sensitive Buildings I.3.1 Buildings Analyzed <\/td>\n<\/tr>\n | ||||||
234<\/td>\n | I.3.2 Modeling <\/td>\n<\/tr>\n | ||||||
235<\/td>\n | I.3.3 Analysis Procedures <\/td>\n<\/tr>\n | ||||||
236<\/td>\n | I.3.4 Detailed Results for Selected Buildings <\/td>\n<\/tr>\n | ||||||
237<\/td>\n | I.3.5 Normalization of Results for Comparison between Buildings <\/td>\n<\/tr>\n | ||||||
238<\/td>\n | I.4 Extreme Torsion <\/td>\n<\/tr>\n | ||||||
239<\/td>\n | I.5 Neglecting Torsion <\/td>\n<\/tr>\n | ||||||
241<\/td>\n | I.6 Torsional Amplification I.6.1 Torsional Amplification Overview I.6.2 Extraction of Torsional Amplification from Analytical Models <\/td>\n<\/tr>\n | ||||||
243<\/td>\n | I.6.3 Torsional Amplification Results <\/td>\n<\/tr>\n | ||||||
244<\/td>\n | I.6.4 Torsional Amplification Calculations in Each Column I.7 Comparison of Results to Other Torsion Studies <\/td>\n<\/tr>\n | ||||||
246<\/td>\n | 26-FEMA_P-2018_AppJ J.1 Overview J.2 Drift Factor for Critical Columns J.2.1 Buildings Analyzed J.2.2 Results <\/td>\n<\/tr>\n | ||||||
248<\/td>\n | J.3 Drift Factor for Critical Slab-Column Connections and Beam-Column Corner Connections J.4 Drift Factor for Critical Wall and Wall Segments <\/td>\n<\/tr>\n | ||||||
249<\/td>\n | 27-FEMA_P-2018_AppK K.1 Introduction K.2 Nonlinear Static Analysis K.3 Incremental Dynamic Analysis <\/td>\n<\/tr>\n | ||||||
252<\/td>\n | K.4 Dynamic Analyses with Hazard-Consistent Ground Motions <\/td>\n<\/tr>\n | ||||||
257<\/td>\n | K.5 Dynamic Analyses for Torsion Studies <\/td>\n<\/tr>\n | ||||||
259<\/td>\n | 28-FEMA_P-2018_AppL L.1 Introduction L.2 Bare Frames Models <\/td>\n<\/tr>\n | ||||||
260<\/td>\n | L.2.1 Building with Flexure-Controlled Columns <\/td>\n<\/tr>\n | ||||||
261<\/td>\n | L.2.2 Building with Shear-Critical Columns L.3 Modeling Criteria of Frame-Wall Systems <\/td>\n<\/tr>\n | ||||||
262<\/td>\n | L.3.1 Frame-Wall Definition <\/td>\n<\/tr>\n | ||||||
263<\/td>\n | L.3.2 Wall Modeling Approach for Frame-Wall Systems <\/td>\n<\/tr>\n | ||||||
269<\/td>\n | L.3.3 Frame Modeling Approach for Frame-Wall Systems <\/td>\n<\/tr>\n | ||||||
270<\/td>\n | 29-FEMA_P-2018_AppM M.1 Column Shear Strength Equation <\/td>\n<\/tr>\n | ||||||
271<\/td>\n | 30-FEMA_P-2018_AppN N.1 Introduction N.2 Expected Wall Behavior and Failure Mode <\/td>\n<\/tr>\n | ||||||
273<\/td>\n | N.3 Drift Capacity of Poorly Detailed Flexure-Controlled Walls <\/td>\n<\/tr>\n | ||||||
276<\/td>\n | N.4 Drift Capacity of Shear-Controlled Walls\/Piers <\/td>\n<\/tr>\n | ||||||
279<\/td>\n | N.5 Drift Capacity of Walls with Inadequate Lap Splices N.6 Drift Capacity of Walls with L-Shaped, T-Shaped, and Half-Barbell Cross-Sections <\/td>\n<\/tr>\n | ||||||
280<\/td>\n | N.7 Drift Capacity of Walls Spirally Reinforced Columns at the Boundary Regions <\/td>\n<\/tr>\n | ||||||
281<\/td>\n | N.7.1 Flexure-Controlled Walls with Spirally Reinforced Columns N.7.2 Shear-Controlled Walls with Spirally Reinforced Columns <\/td>\n<\/tr>\n | ||||||
284<\/td>\n | 31-FEMA_P-2018_AppO O.1 Introduction <\/td>\n<\/tr>\n | ||||||
285<\/td>\n | O.2 Simulation of Collapse of Buildings Infilled with Solid Infills O.2.1 Details of the Prototype Buildings <\/td>\n<\/tr>\n | ||||||
287<\/td>\n | O.2.2 Development of Numerical Models <\/td>\n<\/tr>\n | ||||||
289<\/td>\n | O.2.3 Nonlinear Time-History Analyses <\/td>\n<\/tr>\n | ||||||
290<\/td>\n | O.2.4 Detailed Results for Prototype Buildings <\/td>\n<\/tr>\n | ||||||
292<\/td>\n | O.3 Calculation of Strength of Infilled Frame Buildings O.3.1 Default Material Properties <\/td>\n<\/tr>\n | ||||||
293<\/td>\n | O.3.2 Plastic Mechanism of Infilled Frames O.3.3 Column Effective Length <\/td>\n<\/tr>\n | ||||||
295<\/td>\n | O.3.4 Classification of Infilled Frames based on Failure Mechanism <\/td>\n<\/tr>\n | ||||||
296<\/td>\n | O.3.5 Strength of Single Infilled Bay with Solid Panel <\/td>\n<\/tr>\n | ||||||
298<\/td>\n | O.3.6 Strength of Single Infilled Bay with Openings <\/td>\n<\/tr>\n | ||||||
302<\/td>\n | O.3.7 When to Ignore Infills in Strength? <\/td>\n<\/tr>\n | ||||||
304<\/td>\n | O.3.8 Calculation of Story-Shear Strength <\/td>\n<\/tr>\n | ||||||
306<\/td>\n | O.4 Estimation of Effective Periods <\/td>\n<\/tr>\n | ||||||
307<\/td>\n | O.5 Determination of Story-Drifts <\/td>\n<\/tr>\n | ||||||
308<\/td>\n | O.6 Impact of Infill on Column Ratings <\/td>\n<\/tr>\n | ||||||
310<\/td>\n | 33-FEMA_P-2018_Symbols <\/td>\n<\/tr>\n | ||||||
318<\/td>\n | 34-FEMA_P-2018_References <\/td>\n<\/tr>\n | ||||||
331<\/td>\n | 35-FEMA_P-2018_Participants FEMA Emergency Management Agency Applied Technology Council Project Technical Committee Project Review Panel <\/td>\n<\/tr>\n | ||||||
332<\/td>\n | Working Group Members <\/td>\n<\/tr>\n | ||||||
333<\/td>\n | Trial Evaluation Participants <\/td>\n<\/tr>\n | ||||||
334<\/td>\n | 36-FEMAP-2018_BackCover <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" FEMA P-2018, Seismic Eval Older Concrete Buildings<\/b><\/p>\n |