ASME STS 1 2016
$98.04
ASME STS-1 STS-1 – 2016 Steel Stacks
Published By | Publication Date | Number of Pages |
ASME | 2016 | 110 |
N/A
PDF Catalog
PDF Pages | PDF Title |
---|---|
4 | CONTENTS |
5 | FOREWORD |
6 | COMMITTEE ROSTER |
7 | CORRESPONDENCE WITH THE STS COMMITTEE |
9 | INTRODUCTION |
10 | 1 MECHANICAL DESIGN 1.1 Scope 1.2 General 1.3 Size Selection Height, Diameter, and Shape |
11 | 1.4 Available Draft 1.5 Heat Loss See Nonmandatory Appendix A, Figs. A-2 Through A-9 |
12 | 1.6 Thermal Expansion 1.7 Appurtenances |
13 | 1.8 Mechanical Section Symbols 1.9 Mechanical Section Definitions 2 MATERIALS 2.1 Scope 2.2 Materials |
16 | 3 LININGS AND COATINGS 3.1 Scope 3.2 Linings |
18 | 3.3 Coatings |
20 | 3.4 Corrosion |
21 | 3.5 Insulation, Jacketing, and Strapping 4 STRUCTURAL DESIGN 4.1 Scope |
22 | 4.2 General 4.3 Applied Loading |
24 | 4.4 Allowable Stresses |
25 | Tables Table 4.4.6-1 Factors of Safety |
26 | 4.5 Deflections 4.6 Structural Shell Discontinuities Table 4.4.7-1 Minimum Fabricated Plate Thickness and Maximum Stiffener Spacing |
27 | 4.7 Base 4.8 Anchor Bolts 4.9 False Bottom 4.10 Foundation 4.11 Guyed Stacks |
28 | 4.12 Braced and Tower-Supported Stacks Table 4.11.1.3-1 Cable Selection Criteria |
29 | 4.13 Section 4 Symbols and Definitions |
30 | 5 DYNAMIC WIND LOADS 5.1 Scope 5.2 Dynamic Responses |
31 | Table 5.2.1.2-1 Representative Structural Damping Values (Bs) |
32 | 5.3 Prevention of Excessive Vibrations 5.4 Section 5 Symbols and Definitions |
33 | 6 ACCESS AND SAFETY 6.1 Scope 6.2 General |
34 | 6.3 Fixed Ladders Figures Fig. 6.2.6-1 Example of the General Construction of Cages |
35 | Fig. 6.2.6-2 Minimum Ladder Clearances |
36 | Fig. 6.3.6-1 Ladder Dimensions, Support Spacing, and Side Clearances |
37 | Fig. 6.3.8-1 Landing Platform Dimensions |
38 | 6.4 Work Platforms 6.5 Scaffolding and Hoists Used for Construction of Steel Stacks |
39 | 6.6 Thermal Protection 7 ELECTRICAL 7.1 Scope 7.2 General 7.3 Aviation Obstruction Light System 7.4 Lightning Protection |
40 | 7.5 Convenience Lighting 7.6 Convenience Power Outlets 7.7 Instrumentation: Sampling 8 FABRICATION AND ERECTION 8.1 Purpose 8.2 Scope 8.3 Welding 8.4 Welding Inspection and Nondestructive Testing 8.5 Tolerances |
41 | 8.6 Shop Fabrication and Field Erection 8.7 Grouting 8.8 Handling and Storage 9 INSPECTION AND MAINTENANCE 9.1 Purpose |
42 | 9.2 Scope 9.3 Common Problems 9.4 Inspection |
43 | 9.5 Maintenance 10 REFERENCES |
46 | MANDATORY APPENDIX I STRUCTURAL DESIGN Gust Effect Factor Calculation |
47 | Fig. I-1 Basic Wind Speed (ASCE 7-05) |
49 | Fig. I-1a Basic Wind Speed Western Gulf of Mexico Hurricane Coastline (ASCE 7-05) |
50 | Fig. I-1b Basic Wind Speed Eastern Gulf of Mexico and Southeastern U.S. Hurricane Coastline (ASCE 7-05) |
51 | Fig. I-1c Basic Wind Speed Mid and Northern Atlantic Hurricane Coastline (ASCE 7-05) |
52 | Fig. I-2 Topographic Factor, Kzt |
53 | Table I-1 Terrain Exposure Constants |
54 | Table I-2 Classification of Buildings and Other Structures for Flood, Wind, Snow, and Earthquake Loads |
55 | Table I-3 Importance Factor, I (Wind Loads) Table I-4 Velocity Pressure Exposure Coefficients, Kz |
56 | Table I-5 Force Coefficients, Cf |
57 | Fig. A-1 Friction Factor, f, as Related to Reynolds Number and Stack Diameter NONMANDATORY APPENDIX A MECHANICAL DESIGN |
58 | Fig. A-2 External Heat Transfer Coefficient for Forced and Natural Convection |
59 | Fig. A-3 Effect of a Change in the Ambient Air-Free Stream Temperature on the External Heat Transfer Coefficient for Forced Convection |
61 | Fig. A-5 Heat Transfer Coefficient for the Air Gap Between Two Walls of a Double-Walled Metal Chimney (Mean Temperature 500°F and 600°F) |
62 | Fig. A-6 Internal Heat Transfer Coefficient (Btu/hr-ft2 °F) vs. Velocity (ft/sec) Film Temperature: 200°F |
63 | Fig. A-7 Internal Heat Transfer Coefficient (Btu/hr-ft2 °F) vs. Velocity (ft/sec) Film Temperature: 300°F |
64 | Fig. A-8 Internal Heat Transfer Coefficient (Btu/hr-ft2 °F) vs. Velocity (ft/sec) Film Temperature: 500°F |
65 | Fig. A-9 Internal Heat Transfer Coefficient (Btu/hr-ft2 °F) vs. Velocity (ft/sec) Film Temperature: 1,000°F |
66 | Fig. A-10 Flue Size |
67 | Fig. A-11 Natural Draft |
68 | Fig. A-12 Friction Loss |
69 | Fig. A-13 Exit Loss and Entrance |
70 | Table A-1 K Factors for Breeching Entrance Angle |
71 | Table B-1 ASTM A36 Carbon Steel NONMANDATORY APPENDIX B MATERIALS FOR AMBIENT AND ELEVATED TEMPERATURE SERVICE |
72 | Table B-2 ASTM A387 GRADE 11 Alloy Steel |
73 | Table B-3 ASTM A387 GRADE 12 Alloy Steel |
74 | Table B-4 ASTM A242 Type 1, A606 Type 4 (Corten A) |
75 | Table B-5 ASTM A588 GRADE A, A709 (Corten B) |
76 | Table B-6 ASTM A240 Stainless Steel Type 410 |
77 | Table B-7 ASTM A240 Stainless Steel Type 304 |
78 | Table B-8 ASTM A240 Stainless Steel Type 316 |
79 | Table B-9 ASTM A240 Stainless Steel Type 304L |
80 | Table B-10 ASTM A240 Stainless Steel Type 316L |
81 | Table B-11 ASTM A240 Stainless Steel Type 317 |
82 | Table B-12 ASTM A516 Grade 70 |
83 | Table B-13 ASTM A240 Stainless Steel Type 309 |
84 | Table B-14 ASTM A240 Stainless Steel Type 310 Table B-15 Other Stainless Steels, Nickel Alloys, and Titanium Used for Stacks and Chimney Liners |
85 | Table B-16 Thermal Coefficients of Expansion Table B-17 Maximum Nonscaling Temperature |
86 | NONMANDATORY APPENDIX C LININGS AND COATINGS |
87 | Fig. C-1 Dewpoint in Stack Gases |
88 | Fig. C-2 Sulfuric Acid Saturation Curve |
89 | Table C-1 Suggested Suitability of Linings for Steel Stacks to Withstand Chemical and Temperature Environments of Flue Gases |
90 | Table C-2 Suggested Stack Coating Characteristics and Classifications |
91 | Fig. D-1 Normalized Response Spectrum Values NONMANDATORY APPENDIX D STRUCTURAL DESIGN |
92 | Fig. D-2 Seismic Zone Map |
94 | Table D-1 Special Values for Maximum Ground Acceleration of 1.0g Table D-2 Response Spectrum Scaling Ratio Versus Av |
95 | Table D-3 Allowable Creep Stress of Carbon Steel at Elevated Temperature |
96 | Table D-4 Creep and Rupture Properties of Type 410 Stainless Steel Table D-5 Creep and Rupture Properties of Type 304 Stainless Steel Table D-6 Creep and Rupture Properties of Type 316 Stainless Steel Table D-7 Creep and Rupture Properties of Type 317 Stainless Steel |
97 | Table E-1.1-1 Example 1: Velocity Pressure, qz, Calculations NONMANDATORY APPENDIX E EXAMPLE CALCULATIONS E-1 EXAMPLE CALCULATIONS E-1.1 Example 1 E-1.2 Example 2 E-1.3 Example 3: Calculation Along Wind Loads |
98 | Table E-1.2-1 Example 2: Gust Effect Factor, Gf, Calculations |
99 | Table E-1.3-1 Stack Along Wind Loading |
100 | E-1.4 Example 4: Earthquake Response Calculation E-1.5 Example 5 E-2 VORTEX SHEDDING DESIGN THIS METHODOLOGY IS NOT AN EXAMPLE E-2.1 General Theory |
101 | Table E-1.5-1 Example 5: Earthquake Response Spectrum Example Calculations |
102 | E-3 COMPUTATION OF VORTEX-INDUCED RESPONSE THIS METHODOLOGY IS NOT AN EXAMPLE E-3.1 Evaluation of Loads Due to Vortex Shedding E-3.2 Practical Application E-3.3 Equivalent Static Loads E-3.4 Variable Diameter Stacks |
103 | Table E-4-1 Mode Shape by Element Table E-4-2 Equivalent Fatique and Static Loads by Element E-3.5 Symbols and Definitions E-4 VORTEX SHEDDING EXAMPLE EXAMPLE CALCULATION |
106 | Table F-1 Length Table F-2 Area Table F-3 Volume (Capacity) Table F-4 Kinematic Viscosity (Thermal Diffusivity) Table F-5 Force Table F-6 Force/Length Table F-7 Pressure or Stress (Force per Area) Table F-8 Bending Moment (Torque) Table F-9 Mass Table F-10 Mass per Area NONMANDATORY APPENDIX F CONVERSION FACTORS: U.S. CUSTOMARY TO SI METRIC |
107 | Table F-11 Mass per Volume Table F-12 Temperatures Table F-13 Heat Table F-14 Velocity Table F-15 Acceleration |