BS EN 62129-2:2011
$198.66
Calibration of wavelength/optical frequency measurement instruments – Michelson interferometer single wavelength meters
Published By | Publication Date | Number of Pages |
BSI | 2011 | 66 |
IEC 62129-2:2011 is applicable to instruments measuring the vacuum wavelength or optical frequency emitted from sources that are typical for the fibre-optic communications industry. These sources include Distributed Feedback (DFB) laser diodes, External Cavity lasers and single longitudinal mode fibre-type sources. This standard is part of the IEC 62129 series on the calibration of wavelength/optical frequency measurement instruments. Refer to IEC 62129 for the calibration of optical spectrum analyzers.
PDF Catalog
PDF Pages | PDF Title |
---|---|
6 | English CONTENTS |
8 | INTRODUCTION |
9 | 1 Scope 2 Normative references 3 Terms and definitions |
12 | Figures Figure 1 – Example of a traceability chain |
13 | 4 Preparation for calibration 4.1 Organization 4.2 Traceability 4.3 Advice for measurements and calibrations |
14 | 4.4 Recommendations to customers 5 Single wavelength calibration 5.1 General 5.2 Establishing calibration conditions |
15 | 5.3 Calibration procedure |
16 | Figure 2 – Wavelength meter measurement using a lock quality monitor signal Figure 3 – Wavelength meter measurement using a reference wavelength meter |
19 | Tables Table 1 – Typical parameters to calculate the “On/Off repeatability” measurement duration |
22 | 5.4 Calibration uncertainty |
23 | 5.5 Reporting the results 6 Absolute power calibration |
24 | Annex A (normative) Mathematical basis |
27 | Annex B (informative) Rejection of outliers |
28 | Table B.1 – Critical values Zc as a function of sample size N |
29 | Annex C (informative) Example of a single wavelength calibration Table C.1 – Type A uncertainty contributions for a stability measurement |
30 | Table C.2 – Uncertainty contributions for a “On/Off repeatability” measurement Table C.3 – Uncertainty budget for wavelength dependence |
31 | Table C.4 – Uncertainty budget for the wavelength meter calibration |
32 | Annex D (informative) ITU wavelength bands Table D.1 – The ITU-T bands in different units |
33 | Annex E (informative) Atomic and molecular reference transitions |
34 | Table E.1 – Helium-neon laser lines |
35 | Table E.2 – Centre vacuum wavelengths for acetylene 12C2H2 |
37 | Table E.3 – Frequency and vacuum wavelength values for the v1 + v3 and v1 + v2 + v4 + v5 bands of 13C2H2 |
40 | Table E.4 – List of H13CN transitions |
42 | Table E.5 – List of 12C16O transitions |
43 | Table E.6 – Excited state optogalvanic transitions |
44 | Annex F (informative) Reference locked laser example |
45 | Figure F.1 – Typical measurement arrangement to lock laser to gas absorption line |
46 | Annex G (informative) Balance between accuracy and calibration time |
47 | Table G.1 – Summary of choices |
48 | Bibliography |
51 | Tableau E.3 – Valeurs de fréquence et de longueur d’onde dans le videpour les bandes v1 + v3 et v1 + v2 + v4 + v5 de 13C2H2 |
54 | Tableau E.4 – Liste des transitions H13CN |
56 | Tableau E.5 – Liste des transitions 12C16O |
57 | Tableau E.6 – Transitions optogalvaniques d’état excité |
58 | Annexe F (informative) Exemple de laser verrouillé de référence |
59 | Figure F.1 – Agencement de mesure type pour verrouillerun laser sur une raie d’absorption de gaz |
60 | Annexe G (informative) Equilibre entre la précision et le temps d’étalonnage |
61 | Tableau G.1 – Récapitulatif des choix |
62 | Bibliographie |